Skip to main content

Advertisement

Log in

Overcoming the Blood-Brain Barrier in Chemotherapy Treatment of Pediatric Brain Tumors

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Pediatric brain tumors are most common cancers in childhood and among the leading causes of death in children. Chemotherapy has been used as adjuvant (i.e. after) or neoadjuvant (i.e. before) therapy to surgery and radiotherapy for the management of pediatric brain tumors for more than four decades and gained more attention in the recent two decades. Although chemotherapy has demonstrated its effectiveness in the management of some pediatric brain tumors, failure or inactiveness of chemotherapy is commonly met in the clinics and clinical trials. Some of these failures might be attributed to the blood-brain barrier (BBB), limiting the penetration of systemically administered chemotherapeutics into pediatric brain tumors. Therefore, various strategies have been developed and used to address this issue. Herein, we review different methods reported in the literature to circumvent the BBB for enhancing the present of chemotherapeutics in the brain to treat pediatric brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grondin RT, Scott RM, Smith ER. Pediatric brain tumors. Adv Pediatr. 2009;56:249–69.

    PubMed  Google Scholar 

  2. Ullrichand NJ, Pomeroy SL. Pediatric brain tumors. Neurol Clin. 2003;21:897–913.

    Google Scholar 

  3. R. Packer. Differences between adult and pediactri brain tumors. http://wwwkidsvcancerorg/wp-content/uploads/2011/10/Packer-Differences-Between-Adult-and-Pediatric-Brain-Tumourspdf (2013).

  4. Maibiand Z, Mashrabi O. Pediatric brain tumor. Res J Biol Sci. 2009;6:647–50.

    Google Scholar 

  5. Muellerand S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics. 2009;6:570–86.

    Google Scholar 

  6. Flemingand AJ, Chi SN. Brain tumors in children. Curr Probl Pediatr Adolesc Health Care. 2012;42:80–103.

    Google Scholar 

  7. Karajannis M, Allen JC, Newcomb EW. Treatment of pediatric brain tumors. J Cell Physiol. 2008;217:584–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Pizerand B, May P. 8 - Central nervous system tumours in children. Eur J Surg Oncol. 1997;23:559–64.

    Google Scholar 

  9. Bouffet E, Tabori U, Huang A, Bartels U. Possibilities of new therapeutic strategies in brain tumors. Cancer Treat Rev. 2010;36:335–41.

    CAS  PubMed  Google Scholar 

  10. Khatua S, Sadighi ZS, Pearlman ML, Bochare S, Vats TS. Brain tumors in children-current therapies and newer directions. Indian J Pediatr. 2012;79:922–7.

    PubMed  Google Scholar 

  11. Minturnand JE, Fisher MJ. Gliomas in children. Current Treat Options Neurol. 2013;15:316–27.

    Google Scholar 

  12. Parekh C, Jubran R, Erdreich-Epstein A, Panigrahy A, Bluml S, Finlay J, et al. Treatment of children with recurrent high grade gliomas with a bevacizumab containing regimen. J Neurooncol. 2011;103:673–80.

    CAS  PubMed  Google Scholar 

  13. Couec ML, André N, Thebaud E, Minckes O, Rialland X, Corradini N, et al. Bevacizumab and irinotecan in children with recurrent or refractory brain tumors: toxicity and efficacy trends. Pediatr Blood Cancer. 2012;59:34–8.

    PubMed  Google Scholar 

  14. Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor α and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28:1337–44.

    CAS  PubMed  Google Scholar 

  15. van Vuurden DG, Hulleman E, Meijer OL, Wedekind LE, Kool M, Witt H, et al. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget. 2011;2:984–96.

    PubMed  Google Scholar 

  16. Geyer JR, Stewart CF, Kocak M, Broniscer A, Phillips P, Douglas JG, et al. A phase I and biology study of gefitinib and radiation in children with newly diagnosed brain stem gliomas or supratentorial malignant gliomas. Eur J Cancer. 2010;46:3287–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Pollack IF, Stewart CF, Kocak M, Poussaint TY, Broniscer A, Banerjee A, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology. 2011;13:290–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Pollack IF, Jakacki RI, Blaney SM, Hancock ML, Kieran MW, Phillips P, et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro-Oncology. 2007;9:145–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Yalon M, Rood B, MacDonald TJ, McCowage G, Kane R, Constantini S, et al. A feasibility and efficacy study of rapamycin and erlotinib for recurrent pediatric low–grade glioma (LGG). Pediatr Blood Cancer. 2013;60:71–6.

    PubMed  Google Scholar 

  20. Tremont-Lukatsand IW, Gilbert MR. Advances in molecular therapies in patients with brain tumors. Cancer Control. 2003;10:125–37.

    Google Scholar 

  21. Haas-Kogan DA, Banerjee A, Kocak M, Prados MD, Geyer JR, Fouladi M, et al. Phase I trial of tipifarnib in children with newly diagnosed intrinsic diffuse brainstem glioma. Neuro-Oncology. 2008;10:341–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Broniscer A, Baker JN, Tagen M, Onar-Thomas A, Gilbertson RJ, Davidoff AM, et al. Phase I study of vandetanib during and after radiotherapy in children with diffuse intrinsic pontine glioma. J Clin Oncol. 2010;28:4762–8.

    CAS  PubMed  Google Scholar 

  23. Reardon DA, Vredenburgh JJ, Desjardins A, Peters KB, Sathornsumetee S, Threatt S, et al. Phase 1 trial of dasatinib plus erlotinib in adults with recurrent malignant glioma. J Neurooncol. 2012;108:499–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Vats TS. Adjuvant chemotherapy of pediatric brain tumors. Ann NY Acad Sci. 1997;824:156–66.

    Google Scholar 

  25. Pollackand IF, Jakacki RI. Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol. 2011;7:495–506.

    Google Scholar 

  26. Duffner PK, Horowitz ME, Krischer JP, Friedman HS, Burger PC, Cohen ME, et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N Engl J Med. 1993;328:1725–31.

    CAS  PubMed  Google Scholar 

  27. Dufour C, Grill J, Lellouch-Tubiana A, Puget S, Chastagner P, Frappaz D, et al. High-grade glioma in children under 5 years of age: a chemotherapy only approach with the BBSFOP protocol. Eur J Cancer. 2006;42:2939–45.

    CAS  PubMed  Google Scholar 

  28. Jennings MT, Sposto R, Boyett JM, Vezina LG, Holmes E, Berger MS, et al. Preradiation chemotherapy in primary high-risk brainstem tumors: phase II study CCG-9941 of the children’s cancer group. J Clin Oncol. 2002;20:3431–7.

    CAS  PubMed  Google Scholar 

  29. Turner CD, Gururangan S, Eastwood J, Bottom K, Watral M, Beason R, et al. Phase II study of irinotecan (CPT-11) in children with high-risk malignant brain tumors: the Duke experience. Neuro-Oncology. 2002;4:102–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Warren K, Jakacki R, Widemann B, Aikin A, Libucha M, Packer R, et al. Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: a report from the Children’s Oncology Group. Cancer Chemother Pharmacol. 2006;58:343–7.

    CAS  PubMed  Google Scholar 

  31. Grilland J, Bhangoo R. Recent development in chemotherapy of paediatric brain tumours. Curr Opin Oncol. 2007;19:612–5.

    Google Scholar 

  32. Bomgaars LR, Bernstein M, Krailo M, Kadota R, Das S, Chen Z, et al. Phase II trial of irinotecan in children with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2007;25:4622–7.

    CAS  PubMed  Google Scholar 

  33. Cohen KJ, Heideman RL, Zhou T, Holmes EJ, Lavey RS, Bouffet E, et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children’s Oncology Group. Neuro-Oncology. 2011;13:410–6.

    PubMed Central  PubMed  Google Scholar 

  34. Neuwelt EA, Greig NH, Raffel C, Amar AP, Apuzzo MLJ, Antel JP, et al. Mechanisms of disease: the blood-brain barrier. Neurosurgery. 2004;54:131–42.

    PubMed  Google Scholar 

  35. Virgintino D, Errede M, Robertson D, Capobianco C, Girolamo F, Vimercati A, et al. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol. 2004;122:51–9.

    CAS  PubMed  Google Scholar 

  36. Iqbal M, Gibb W, Matthews SG. Corticosteroid regulation of P-glycoprotein in the developing blood-brain barrier. Endocrinology. 2011;152:1067–79.

    CAS  PubMed  Google Scholar 

  37. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. NeuroToxicology. 2012;33:586–604.

    CAS  PubMed  Google Scholar 

  38. Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA. Transporters of the blood-brain and blood—CSF interfaces in development and in the adult. Mol Asp Med. 2013;34:742–52.

    CAS  Google Scholar 

  39. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    CAS  PubMed  Google Scholar 

  40. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.

    CAS  PubMed  Google Scholar 

  41. Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. 2007;12:54–61.

    CAS  PubMed  Google Scholar 

  42. Blakeley J. Drug delivery to brain tumors. Curr Neurol Neurosci Rep. 2008;8:235–41.

    CAS  PubMed  Google Scholar 

  43. Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther. 2009;123:80–104.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang SM, Liu X, et al. Why clinical modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-based position. Clin Pharmacol Ther. 2013;94:80–94.

    CAS  PubMed  Google Scholar 

  45. El-Bachaand RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol. 1999;45:15–23.

    Google Scholar 

  46. Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2011;1812:252–64.

    CAS  Google Scholar 

  47. Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K. The disturbed blood-brain barrier in human glioblastoma. Mol Asp Med. 2012;33:579–89.

    CAS  Google Scholar 

  48. Vick NA, Khandekar JD, Bigner DD. Chemotherapy of brain tumors. The ‘blood-brain barrier’ is not a factor. Arch Neurol. 1977;34:523–6.

    CAS  PubMed  Google Scholar 

  49. Stewart DJ. A critique of the role of the blood-brain barrier in the chemotherapy of human brain tumors. J Neurooncol. 1994;20:121–39.

    CAS  PubMed  Google Scholar 

  50. Elliott PJ, Hayward NJ, Huff MR, Nagle TL, Black KL, Bartus RT. Unlocking the blood-brain barrier: a role for RMP-7 in brain tumor therapy. Exp Neurol. 1996;141:214–24.

    CAS  PubMed  Google Scholar 

  51. Schlageter KE, Molnar P, Lapin GD, Groothuis DR. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999;58:312–28.

    CAS  PubMed  Google Scholar 

  52. Warren KE, Patel MC, Aikin AA, Widemann B, Libucha M, Adamson PC, et al. Phase I trial of lobradimil (RMP-7) and carboplatin in children with brain tumors. Cancer Chemother Pharmacol. 2001;48:275–82.

    CAS  PubMed  Google Scholar 

  53. Gururanganand S, Friedman HS. Innovations in design and delivery of chemotherapy for brain tumors. Neuroimaging Clin N Am. 2002;12:583–97.

    Google Scholar 

  54. Blackand KL, Ningaraj NS. Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control. 2004;11:165–73.

    Google Scholar 

  55. Haluskaand M, Anthony ML. Osmotic blood-brain barrier modification for the treatment of malignant brain tumors. Clin J Oncol Nurs. 2004;8:263–7.

    Google Scholar 

  56. Kioi M, Husain SR, Croteau D, Kunwar S, Puri RK. Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat. 2006;5:239–50.

    CAS  PubMed  Google Scholar 

  57. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16:5664–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Costantinoand L, Boraschi D. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today. 2012;17:367–78.

    Google Scholar 

  59. Neuwelt EA, Barnett PA, Bigner DD, Frenkel EP. Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc Natl Acad Sci U S A. 1982;79:4420–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-Oncology. 2000;2:45–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Pollack IF, Boyett JM, Finlay JL. Chemotherapy for high-grade gliomas of childhood. Childs Nerv Syst. 1999;15:529–44.

    CAS  PubMed  Google Scholar 

  62. McDannold N, Vykhodtseva N, Hynynen K. Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol. 2008;34:834–40.

    PubMed Central  PubMed  Google Scholar 

  63. Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, et al. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. 2010;255:415–25.

    PubMed  Google Scholar 

  64. Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003;20:409–16.

    CAS  PubMed  Google Scholar 

  65. Weiss CK, Kohnle MV, Landfester K, Hauk T, Fischer D, Schmitz-Wienke J, et al. The first step into the brain: uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation. ChemMedChem. 2008;3:1395–403.

    CAS  PubMed  Google Scholar 

  66. Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L. Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomedicine Nanotechnol Biol Med. 2009;5:369–77.

    CAS  Google Scholar 

  67. Gil ES, Li J, Xiao H, Lowe TL. Quaternary ammonium β-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier. Biomacromolecules. 2009;10:505–16.

    CAS  PubMed  Google Scholar 

  68. Gil ES, Wu L, Xu L, Lowe TL. β-Cyclodextrin-poly(β-Amino Ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Biomacromolecules. 2012;13:3533–41.

    CAS  PubMed  Google Scholar 

  69. Mogami H, Higashi H, Hayakawa T, Kuroda R, Kanai N. Selection of cytostatic agents for intrathecal chemotherapy of brain tumor. Med J Osaka Univ. 1967;17:333–40.

    CAS  PubMed  Google Scholar 

  70. Wilsonand CB, Norrell Jr HA. Brain tumor chemotherapy with intrathecal methotrexate. Cancer. 1969;23:1038–45.

    Google Scholar 

  71. Kerr JZ, Berg S, Blaney SM. Intrathecal chemotherapy. Crit Rev Oncol Hematol. 2001;37:227–36.

    CAS  PubMed  Google Scholar 

  72. Lassaletta A, Lopez-Ibor B, Mateos E, Gonzalez-Vicent M, Perez-Martinez A, Sevilla J, et al. Intrathecal liposomal cytarabine in children under 4 years with malignant brain tumors. J Neurooncol. 2009;95:65–9.

    CAS  PubMed  Google Scholar 

  73. Bomgaars L, Geyer JR, Franklin J, Dahl G, Park J, Winick NJ, et al. Phase I trial of intrathecal liposomal cytarabine in children with neoplastic meningitis. J Clin Oncol. 2004;22:3916–21.

    CAS  PubMed  Google Scholar 

  74. Parasole R, Menna G, Marra N, Petruzziello F, Locatelli F, Mangione A, et al. Efficacy and safety of intrathecal liposomal cytarabine for the treatment of meningeal relapse in acute lymphoblastic leukemia: experience of two pediatric institutions. Leuk Lymphoma. 2008;49:1553–9.

    CAS  PubMed  Google Scholar 

  75. Partap S, Murphy PA, Vogel H, Barnes PD, Edwards MSB, Fisher PG. Liposomal cytarabine for central nervous system embryonal tumors in children and young adults. J Neurooncol. 2011;103:561–6.

    CAS  PubMed  Google Scholar 

  76. Hunt Bobo R, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91:2076–80.

    Google Scholar 

  77. Fergusonand S, Lesniak MS. Convection enhanced drug delivery of novel therapeutic agents to malignant brain tumors. Curr Drug Deliv. 2007;4:169–80.

    Google Scholar 

  78. Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical study. J Neurosurg. 2004;100:472–9.

    CAS  PubMed  Google Scholar 

  79. Kunwar S, Prados MD, Chang SM, Berger MS, Lang FF, Piepmeier JM, et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the cintredekin besudotox intraparenchymal study group. J Clin Oncol. 2007;25:837–44.

    CAS  PubMed  Google Scholar 

  80. Allard E, Passirani C, Benoit J-P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials. 2009;30:2302–18.

    CAS  PubMed  Google Scholar 

  81. Kunwar S. Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. Acta Neurochir Suppl. 2003;88:105–11.

    CAS  PubMed  Google Scholar 

  82. Debinskiand W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother. 2009;9:1519–27.

    Google Scholar 

  83. Bruce JN, Fine RL, Canoll P, Yun J, Kennedy BC, Rosenfeld SS, et al. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery. 2011;69:1272–9.

    PubMed  Google Scholar 

  84. Saito R, Sonoda Y, Kumabe T, Nagamatsu KI, Watanabe M, Tominaga T. Regression of recurrent glioblastoma infiltrating the brainstem after convection-enhanced delivery of nimustine hydrochloride: case report. J Neurosurg Pediatr. 2011;7:522–6.

    PubMed  Google Scholar 

  85. Patrick JT, Nolting MN, Goss SA, Dines KA, Clendenon JL, Rea MA, et al. Ultrasound and the blood-brain barrier. Adv Exp Med Biol. 1990;267:369–81.

    CAS  PubMed  Google Scholar 

  86. Dahlborg SA, Petrillo A, Crossen JR, Roman-Goldstein S, Doolittle ND, Fuller KH, et al. The potential for complete and durable response in nonglial primary brain tumors in children and young adults with enhanced chemotherapy delivery. Cancer J Sci Am. 1998;4:110–24.

    CAS  PubMed  Google Scholar 

  87. Guillaume DJ, Doolittle ND, Gahramanov S, Hedrick NA, Delashaw JB, Neuwelt EA. Intra-arterial chemotherapy with osmotic blood-brain barrier disruption for aggressive oligodendroglial tumors: results of a phase i study. Neurosurgery. 2010;66:48–58.

    PubMed Central  PubMed  Google Scholar 

  88. Shin BJ, Burkhardt JK, Riina HA, Boockvar JA. Superselective intra-arterial cerebral infusion of novel agents after blood-brain disruption for the treatment of recurrent glioblastoma multiforme: a technical case series. Neurosurg Clin N Am. 2012;23:323–9.

    PubMed  Google Scholar 

  89. Neuwelt EA, Diehl JT, Vu LH. Monitoring of methotrexate delivery in patients with malignant brain tumors after osmotic blood-brain barrier disruption. Ann Intern Med. 1981;94:449–54.

    CAS  PubMed  Google Scholar 

  90. Miyagami M, Tsubokawa T, Tazoe M, Kagawa Y. Intra-arterial ACNU chemotherapy employing 20% mannitol osmotic blood-brain barrier disruption for malignant brain tumors. Neurol Med Chir. 1990;30:582–90.

    CAS  Google Scholar 

  91. Jahnke K, Kraemer DF, Knight KR, Fortin D, Bell S, Doolittle ND, et al. Intraarterial chemotherapy and osmotic blood-brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer. 2008;112:581–8.

    PubMed  Google Scholar 

  92. Angelov L, Doolittle ND, Kraemer DF, Siegal T, Barnett GH, Peereboom DM, et al. Blood-brain barrier disruption and intra-arterial methotrexate-based therapy for newly diagnosed primary CNS lymphoma: a multi-institutional experience. J Clin Oncol. 2009;27:3503–9.

    CAS  PubMed  Google Scholar 

  93. Dahlborg SA, Henner WD, Crossen JR, Tableman M, Petrillo A, Braziel R, et al. Non-AIDS primary CNS lymphoma: first example of a durable response in a primary brain tumor using enhanced chemotherapy delivery without cognitive loss and without radiotherapy. Cancer J Sci Am. 1996;2:166–74.

    CAS  PubMed  Google Scholar 

  94. Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O. Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev. 2004;30:415–23.

    PubMed  Google Scholar 

  95. Ford J, Osborn C, Barton T, Bleehen NM. A phase I study of intravenous RMP-7 with carboplatin in patients with progression of malignant glioma. Eur J Cancer. 1998;34:1807–11.

    CAS  PubMed  Google Scholar 

  96. Emerich DF, Dean RL, Osborn C, Bartus RT. The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: from concept to clinical evaluation. Clin Pharmacokinet. 2001;40:105–23.

    CAS  PubMed  Google Scholar 

  97. Warren K, Gervais A, Aikin A, Egorin M, Balis FM. Pharmacokinetics of carboplatin administered with lobradimil to pediatric patients with brain tumors. Cancer Chemother Pharmacol. 2004;54:206–12.

    CAS  PubMed  Google Scholar 

  98. Cloughesy TF, Black KL, Gobin YP, Farahani K, Nelson G, Villablanca P, et al. Intra-arterial cereport (RMP-7) and carboplatin: a dose escalation study for recurrent malignant gliomas. Neurosurgery. 1999;44:270–9.

    CAS  PubMed  Google Scholar 

  99. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29:1509–17.

    CAS  PubMed  Google Scholar 

  100. Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm. 2008;5:105–16.

    CAS  PubMed  Google Scholar 

  101. Liand C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev. 2008;60:886–98.

    Google Scholar 

  102. Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, et al. Complete regression of well-established tumors using a novel water- soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res. 1998;58:2404–9.

    CAS  PubMed  Google Scholar 

  103. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–9.

    CAS  PubMed  Google Scholar 

  104. Webb M, Harasym TO, Masin D, Bally MB, Mayer LD. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer. 1995;72:896–904.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Tokes ZA, Stpeteri AK, Todd JA. Availability of liposome content to the nervous system. Liposomes and the blood-brain barrier. Brain Res. 1980;188:282–6.

    CAS  PubMed  Google Scholar 

  106. Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today. 2007;2:18–29.

    Google Scholar 

  107. Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol Ther. 2011;19:1538–46.

    CAS  PubMed  Google Scholar 

  108. Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles: development and applications. Nano Res. 2008;1:99–115.

    CAS  Google Scholar 

  109. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug–delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794–805.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Fan C-H, Ting C-Y, Lin H-J, Wang C-H, Liu H-L, Yen T-C, Yeh C-K. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials. 2013;34:3706–15.

    Google Scholar 

  112. Lu W, Sun Q, Wan J, She ZJ, Jiang XG. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 2006;66:11878–87.

    CAS  PubMed  Google Scholar 

  113. Régina A, Demeule M, Ché C, Lavallée I, Poirier J, Gabathuler R, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol. 2008;155:185–97.

    PubMed  Google Scholar 

  114. Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res. 2009;26:2486–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Huang R, Ke W, Han L, Li J, Liu S, Jiang C. Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration. Biomaterials. 2011;32:2399–406.

    CAS  PubMed  Google Scholar 

  116. Nair BG, Varghese SH, Nair R, Yoshida Y, Maekawa T, Kumar DS. Nanotechnology platforms; an innovative approach to brain tumor therapy. Med Chem. 2011;7:488–503.

    CAS  PubMed  Google Scholar 

  117. Gaillard P, Gladdines W, Appeldoorn C, Rip J, Boogerd W, Beijnen J, Brandsma D, Van TO. Development of glutathione pegylated liposomal doxorubicin (2B3-101) for the treatment of brain cancer. the 4th European Conference for Clinical Nanomedicine. Basel, Switzerland: (2011).

  118. Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33:8167–76.

    CAS  PubMed  Google Scholar 

  119. Koo YEL, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58:1556–77.

    CAS  PubMed  Google Scholar 

  120. Jonesand AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24:1759–71.

    Google Scholar 

  121. Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. Aaps J. 2008;10:455–72.

    PubMed  Google Scholar 

  122. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161:264–73.

    CAS  PubMed  Google Scholar 

  123. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nano. 2007;2:751–60.

    CAS  Google Scholar 

  124. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2:3.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Huang H-C, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155:344–57.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments And Disclosures

The authors thank DOD and the University of Tennessee Health Science Center for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao L. Lowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Li, X., Janagam, D.R. et al. Overcoming the Blood-Brain Barrier in Chemotherapy Treatment of Pediatric Brain Tumors. Pharm Res 31, 531–540 (2014). https://doi.org/10.1007/s11095-013-1196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1196-z

KEY WORDS

Navigation