Skip to main content

Blood–Brain Barrier and CNS Malignancy

  • Chapter
  • First Online:
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 3733 Accesses

Abstract

Improving treatment outcomes for patients with central nervous system (CNS) malignancies is associated with a series of difficult challenges. The use of enzyme-inducing antiepileptic drugs and glucocorticoids significantly affects the pharmacology of many systemically administered anticancer agents. The blood–brain barrier plays a major role in restricting the delivery of drugs to the CNS and there are a host of drug resistance mechanisms within the blood–brain barrier and brain tumors which further limit the effectiveness of therapeutic agents. This chapter reviews important characteristics of CNS malignancies and focuses on unique aspects of care for neurologic cancers, characteristics of the blood–brain barrier (BBB), drug resistance mechanisms, important drug interactions, and novel approaches to increase drug delivery to the brain tumor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  Google Scholar 

  3. Groothuis DR (2000) The blood–brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2(1):45–59

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Huynh GH, Deen DF, Szoka FC Jr (2006) Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 110(2):236–259

    CAS  PubMed  Google Scholar 

  5. Omuro AM, Faivre S, Raymond E (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6:1909–1919

    CAS  PubMed  Google Scholar 

  6. Buckner JC, Brown PD, O’Neill BP et al (2007) Central nervous system tumors. Mayo Clin Proc 82(10):1271–1286

    PubMed  Google Scholar 

  7. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    CAS  PubMed  Google Scholar 

  8. Van den Bent MJ, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31(3):344–350

    Google Scholar 

  9. Gornet MK, Buckner JC, Marks RS et al (1999) Chemotherapy for advanced CNS ependymoma. J Neurooncol 45(1):61–67

    CAS  PubMed  Google Scholar 

  10. Packer RJ, Cogen P, Vezina G et al (1999) Medulloblastoma: clinical and biologic aspects. Neuro Oncol 1(3):232–250

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Batchelor T, Carson K, O’Neill A et al (2003) Treatment of primary CNS lymphoma with methotrexate and deferred radiotherapy: a report of NABTT 96–07. J Clin Oncol 21(6):1044–1049

    CAS  PubMed  Google Scholar 

  12. DeAngelis LM, Seiferheld W, Schold SC et al (2002) Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93–10. J Clin Oncol 20(24):4643–4648

    PubMed  Google Scholar 

  13. Doolittle ND, Miner ME, Hall WA et al (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood–brain barrier for the treatment of patients with malignant brain tumors. Cancer 88(3):637–647

    CAS  PubMed  Google Scholar 

  14. Hughes JR, Zak SM (1987) EEG and clinical changes in patients with chronic seizures associated with slowly growing brain tumors. Arch Neurol 44(5):540–543

    CAS  PubMed  Google Scholar 

  15. Moots PL, Maciunas RJ, Eisert DR et al (1995) The course of seizure disorders in patients with malignant gliomas. Arch Neurol 52(7):717–724

    CAS  PubMed  Google Scholar 

  16. Bartolomei JC, Christopher S, Vives K et al (1997) Low-grade gliomas of chronic epilepsy: a distinct clinical and pathological entity. J Neurooncol 34(1):79–84

    CAS  PubMed  Google Scholar 

  17. Glantz MJ, Cole BF, Forsyth PA et al (2000) Practice parameters: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Neurology 54:1886–1893

    CAS  PubMed  Google Scholar 

  18. Fetell MR, Grossman SA, Fisher JD et al (1997) Preirradiation paclitaxel in glioblastoma multiforme: efficacy, pharmacology, and drug interactions. New approaches to brain tumor therapy central nervous system consortium. J Clin Oncol 15(9):3121–3128

    CAS  PubMed  Google Scholar 

  19. Grossman SA, Hochberg F, Fisher J et al (1998) Increased 9-aminocamptothecin dose requirements in patients on anticonvulsants. NABTT CNS Consortium. The new approaches to brain tumor therapy. Cancer Chemother Pharmacol 42(2):118–126

    CAS  PubMed  Google Scholar 

  20. Villikka K, Kivistö KT, Mäenpää H et al (1999) Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 66:589–593

    CAS  PubMed  Google Scholar 

  21. Baker DK, Relling MV, Pui CH et al (1992) Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol 10:311–315

    CAS  PubMed  Google Scholar 

  22. Friedman HS, Petros WP, Friedman AH et al (1999) Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 17:1516–1525

    CAS  PubMed  Google Scholar 

  23. Kaal EC, Vecht CJ (2004) The management of brain edema in brain tumors. Curr Opin Oncol 16(6):593–600

    CAS  PubMed  Google Scholar 

  24. Straathof CS, van den Bent MJ, Ma J et al (1998) The effect of dexamethasone on the uptake of cisplatin in 9L glioma and the area of brain around tumor. J Neurooncol 37:1–8

    CAS  PubMed  Google Scholar 

  25. Straathof CS, van den Bent MJ, Loos WJ et al (1999) The accumulation of topotecan in 9L glioma and in the brain parenchyma with and without dexamethasone administration. J Neurooncol 42:117–122

    CAS  PubMed  Google Scholar 

  26. Stark-Vance V (2005) Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma (abstract 342). Proc Soc Neuro-Oncol 7:369

    Google Scholar 

  27. Vredenburgh JJ, Desjardins A, Herndon JE II et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25(30):4722–4729

    CAS  PubMed  Google Scholar 

  28. Pottiez G, Flahaut C, Cecchelli R et al (2009) Understanding the blood–brain barrier using gene and protein expression profiling technologies. Brain Res Rev 62(1):83–98

    CAS  PubMed  Google Scholar 

  29. Cecchelli R, Berezowski V, Lundquist S et al (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661

    CAS  PubMed  Google Scholar 

  30. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    CAS  PubMed  Google Scholar 

  31. Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1(5):409–417

    CAS  PubMed  Google Scholar 

  32. Crone C, Christensen O (1981) Electrical resistance of a capillary endothelium. J Gen Physiol 77(4):349–371

    CAS  PubMed  Google Scholar 

  33. Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62

    CAS  PubMed  Google Scholar 

  34. Abbott NJ, Ronnback L, Hansson E et al (2006) Astrocyte-endothelial interactions at the BBB. Nat Rev Neurosci 7(1):41–53

    CAS  PubMed  Google Scholar 

  35. Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: pericytes. Brain Res Rev 50(2):258–265

    CAS  PubMed  Google Scholar 

  36. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci 24(12):719–725

    CAS  PubMed  Google Scholar 

  37. Bart J, Groen HJ, Hendrikse NH et al (2000) The blood–brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev 26(6):449–462

    CAS  PubMed  Google Scholar 

  38. Laquintana V, Trapani A, Denora N et al (2009) New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 6(10):1017–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Hediger MA, Romero MF, Peng JB et al (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins Introduction. Pflugers Arch 447(5):465–468

    CAS  PubMed  Google Scholar 

  40. Huang Y, Sadee W (2006) Membrane transporters and channels in chemoresistance and sensitivity of tumor cells. Cancer Lett 239(2):168–182

    CAS  PubMed  Google Scholar 

  41. Pardridge WM (1999) Blood–brain barrier biology and methodology. J Neurovirol 5(6):556–569

    CAS  PubMed  Google Scholar 

  42. Gaillard PJ, Visser CC, de Boer AG et al (2005) Targeted delivery across the blood–brain barrier. Expert Opin Drug Deliv 2(2):299–309

    CAS  PubMed  Google Scholar 

  43. Pardridge WM (2003) Blood–brain barrier drug targeting: the future of brain drug development. Mol Interv 3(2):90–105

    CAS  PubMed  Google Scholar 

  44. Liebner S, Fischmann A, Rascher G et al (2000) Caludin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100(3):323–331

    CAS  PubMed  Google Scholar 

  45. Levin NA (1987) Pharmacokinetics and central nervous system chemotherapy. McGraw-Hill, New York, NY

    Google Scholar 

  46. de Vries NA, Beijnen JH, Boogerd W et al (2006) Blood–brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 6(8):1199–1209

    PubMed  Google Scholar 

  47. Thiebaut F, Tsuruo T, Hamada H et al (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84(21):7735–7738

    CAS  PubMed  Google Scholar 

  48. Cordon-Cardo C, O’Brien JP, Boccia J et al (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 9:1277–1287

    Google Scholar 

  49. Tsuji A, Terasaki T, Takabatake Y et al (1992) P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci 51(18):1427–1437

    CAS  PubMed  Google Scholar 

  50. Lee YJ, Kusuhara H, Jonker JW et al (2005) Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood–brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther 312(1):44–52

    CAS  PubMed  Google Scholar 

  51. Gerstner ER, Fine RL (2007) Increased permeability of the blood–brain barrier to chemotherapy in metastatic brain tumors: establishing a treatment paradigm. J Clin Oncol 25(16):2306–2312

    PubMed  Google Scholar 

  52. Deeley RG, Westlake C, Cole SP (2006) Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86(3):849–899

    CAS  PubMed  Google Scholar 

  53. Haga S, Hinoshita E, Ikezaki K et al (2001) Involvement of the multidrug resistance protein 3 in drug sensitivity and its expression in human glioma. Jpn J Cancer Res 92(2):211–219

    CAS  PubMed  Google Scholar 

  54. Bronger H, König J, Kopplow K et al (2005) ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res 65(24):11419–11428

    CAS  PubMed  Google Scholar 

  55. Calatozzolo C, Gelati M, Ciusani E et al (2005) Expression of drug resistance proteins P-gp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J Neurooncol 74(2):113–121

    CAS  PubMed  Google Scholar 

  56. Nies AT, Jedlitschky G, König J et al (2004) Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129(2):349–360

    CAS  PubMed  Google Scholar 

  57. Leggas M, Adachi M, Scheffer GL et al (2004) Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 24:7612–7621

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Doyle LA, Yang W, Abruzzo LV et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95(26):15665–15670

    CAS  PubMed  Google Scholar 

  59. Cooray HC, Blackmore CG, Maskell L et al (2002) Localization of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13(16):2059–2063

    CAS  PubMed  Google Scholar 

  60. de Vries NA, Zhao J, Kroon E et al (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13(21):6440–6449

    PubMed  Google Scholar 

  61. Kilic T, Alberta JA, Zdunek PR et al (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60(18):5143–5150

    CAS  PubMed  Google Scholar 

  62. Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res 12(16):4899–4907

    CAS  PubMed  Google Scholar 

  63. Holdhoff M, Supko JG, Gallia GL et al (2010) Intratumoral concentrations of imatinib after oral administration in patients with glioblastoma multiforme. J Neurooncol 97(2):241–245

    CAS  PubMed  Google Scholar 

  64. Huber RD, Gao B, Sidler Pfändler MA et al (2007) Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292(2):C795–C806

    CAS  PubMed  Google Scholar 

  65. Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447(5):653–665

    CAS  PubMed  Google Scholar 

  66. Alebouyeh M, Takeda M, Onozato ML et al (2003) Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci 93(4):430–436

    CAS  PubMed  Google Scholar 

  67. Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24(7):1227–1251

    CAS  PubMed  Google Scholar 

  68. Bredel M, Zentner J (2002) Brain-tumour drug resistance: the bare essentials. Lancet Oncol 3(7):397–406

    CAS  PubMed  Google Scholar 

  69. Friedman HS, Colvin OM, Kaufmann SH et al (1992) Cyclophosphamide resistance in medulloblastoma. Cancer Res 52(19):5373–5378

    CAS  PubMed  Google Scholar 

  70. Kudo H, Mio T, Kokunai T, Tamaki N et al (1990) Quantitative analysis of glutathione in human brain tumors. J Neurosurg 72(4):610–615

    CAS  PubMed  Google Scholar 

  71. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4:296–307

    CAS  PubMed  Google Scholar 

  72. Sabharwal A, Middleton MR (2006) Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in cancer therapy. Curr Opin Pharmacol 6:355–363

    CAS  PubMed  Google Scholar 

  73. Kaina B, Christmann M et al (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6:1079–1099

    CAS  Google Scholar 

  74. Nagane M, Kobayashi K, Ohnishi A et al (2007) Prognostic significance of O6-methylguanine-DNA methyltransferase protein expression in patients with recurrent glioblastoma treated with temozolomide. Jpn J Clin Oncol 37(12):897–906

    PubMed  Google Scholar 

  75. Pollack IF, Hamilton RL, Sobol RW et al (2006) O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 Cohort. J Clin Oncol 24(21):3431–3437

    CAS  PubMed  Google Scholar 

  76. Chinot OL, Barrié M, Fuentes S et al (2007) Correlation between O6-methylguanine-DNA methyltransferase and survival in inoperable newly diagnosed glioblastoma patients treated with neoadjuvant temozolomide. J Clin Oncol 25(12):1470–1475

    CAS  PubMed  Google Scholar 

  77. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    CAS  PubMed  Google Scholar 

  78. Dunn J, Baborie A, Alam F et al (2009) Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br J Cancer 101(1):124–131

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Glas M, Happold C, Rieger J et al (2009) Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J Clin Oncol 27(8):1257–1261

    CAS  PubMed  Google Scholar 

  80. Kulke MH, Hornick JL, Frauenhoffer C et al (2009) O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res 15(1):338–345

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kesari S, Schiff D, Drappatz J et al (2009) Phase II study of protracted daily temozolomide for low-grade gliomas in adults. Clin Cancer Res 15(1):330–337

    CAS  PubMed  Google Scholar 

  82. Bredel M, Gatterbauer B, Birner P et al (2002) Expression of DNA topoisomerase IIα in oligodendroglioma. Anticancer Res 22:1301–1304

    CAS  PubMed  Google Scholar 

  83. Bredel M, Slavc I, Birner P (2002) Topoisomerase IIα expression in optic pathway gliomas of childhood. Eur J Cancer 38:393–400

    CAS  PubMed  Google Scholar 

  84. Levin VA (1980) Relation of octanol/water partition and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    CAS  PubMed  Google Scholar 

  85. Greig NH, Yu QS, Utsuki T et al (2001) Optimizing drugs for brain action. In: Kobiler D, Lustig DS, Shapira S (eds) Blood–brain barrier. Kluwer, New York, NY

    Google Scholar 

  86. Walker MD, Alexander E, Hunt WE et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial. J Neurosurg 49:333–343

    CAS  PubMed  Google Scholar 

  87. Walker MD, Green SB, Byar DP et al (1980) Randomized comparison of radiotherapy and nitrosureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329

    CAS  PubMed  Google Scholar 

  88. The Medical Research Council Brain Tumour Working Party (2001) Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a Medical Research Council trial. J Clin Oncol 19:509–518

    Google Scholar 

  89. Levin VA, Silver P, Hannigan J et al (1990) Superiority of post-radiotherapy adjuvant chemotherapy with CCNU, procarbazine, and vincristine(PCV) over BCNU for anaplastic gliomas: NCOG 6G61 final report. Int J Radiat Oncol Biol Phys 18:321–324

    CAS  PubMed  Google Scholar 

  90. Prados MD, Lamborn K, Yung WK et al (2006) A phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro Oncol 8(2):189–193

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Fine HA, Dear KB, Leoffler JS et al (1993) Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71:2585–2597

    CAS  PubMed  Google Scholar 

  92. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018

    CAS  PubMed  Google Scholar 

  93. Baker SD, Wirth M, Statkevich P et al (1999) Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 5(2):309–317

    CAS  PubMed  Google Scholar 

  94. Newlands ES, Stevens MF, Wedge SR et al (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23(1):35–61

    CAS  PubMed  Google Scholar 

  95. Villano JL, Seery TE, Bressler LR (2009) Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol 64(4):647–655

    CAS  PubMed  Google Scholar 

  96. Kanzawa T, Bedwell J, Kondo Y et al (2003) Inhibition of DNA repair for sensitizing resistant glioma cell to temozolomide. J Neurosurg 99:1047–1052

    CAS  PubMed  Google Scholar 

  97. Roos WP, Batista LF, Naumann SC et al (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26(2):186–197

    CAS  PubMed  Google Scholar 

  98. Ziegler DS, Kung AL, Kieran MW (2008) Anti-apoptosis mechanisms in malignant gliomas. J Clin Oncol 26(3):493–500

    CAS  PubMed  Google Scholar 

  99. Marchesi F, Turriziani M, Tortorelli G et al (2007) Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res 56(4):275–287

    CAS  PubMed  Google Scholar 

  100. Bokstein F, Shpigel S (2008) Blumenthal DT (2008) Treatment with bevacizumab and irinotecan for recurrent high-grade glial tumors. Cancer 112(10):2267–2273

    CAS  PubMed  Google Scholar 

  101. Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    CAS  PubMed  Google Scholar 

  102. Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65(6):529–539

    PubMed  Google Scholar 

  103. Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985

    CAS  PubMed  Google Scholar 

  104. Keck PJ, Hauser SD, Krivi G et al (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246(4935):1309–1312

    CAS  PubMed  Google Scholar 

  105. Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309

    CAS  PubMed  Google Scholar 

  106. Nagy JA, Benjamin L, Zeng H et al (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11(2):109–119

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Wang Y, Fei D, Vanderlaan M et al (2004) Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7(4):335–345

    CAS  PubMed  Google Scholar 

  108. Johnson DB, Thompson JM, Corwin JA et al (1987) Prolongation of survival for high-grade malignant gliomas with adjuvant high-dose BCNU and autologous bone marrow transplantation. J Clin Oncol 5(5):783–789

    CAS  PubMed  Google Scholar 

  109. Kessinger A (1984) High dose chemotherapy with autologous bone marrow rescue for high grade gliomas of the brain: a potential for improvement in therapeutic results. Neurosurgery 15(5):747–750

    CAS  PubMed  Google Scholar 

  110. Fernández-Hidalgo OA, Vanaclocha V, Vieitez JM, Aristu JJ, Rebollo J et al (1996) High-dose BCNU and autologous progenitor cell transplantation given with intra-arterial cisplatinum and simultaneous radiotherapy in the treatment of high-grade gliomas: benefit for selected patients. Bone Marrow Transplant 18(1):143–149

    PubMed  Google Scholar 

  111. Papadakis V, Dunkel IJ, Cramer LD et al (2000) High-dose carmustine, thiotepa and etoposide followed by autologous bone marrow rescue for the treatment of high risk central nervous system tumors. Bone Marrow Transplant 26(2):153–160

    CAS  PubMed  Google Scholar 

  112. Papadopoulos KP, Garvin JH, Fetell M et al (1998) High-dose thiotepa and etoposide-based regimens with autologous hematopoietic support for high-risk or recurrent CNS tumors in children and adults. Bone Marrow Transplant 22(7):661–667

    CAS  PubMed  Google Scholar 

  113. Fine HA, Antman KH (1992) High-dose chemotherapy with autologous bone marrow transplantation in the treatment of high grade astrocytomas in adults: therapeutic rationale and clinical experience. Bone Marrow Transplant 10(4):315–321

    CAS  PubMed  Google Scholar 

  114. Fenstermacher J, Gazendam J (1981) Intra-arterial infusions of drugs and hyperosmotic solutions as ways of enhancing CNS chemotherapy. Cancer Treat Rep 65(Suppl 2):27–37

    CAS  PubMed  Google Scholar 

  115. Blakeley JO, Olson J, Grossman SA et al (2009) Effect of BBB permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol 91(1):51–58

    CAS  PubMed  Google Scholar 

  116. Shapiro WR, Green SB, Burger PC et al (1992) A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. J Neurosurg 76(5):772–781

    CAS  PubMed  Google Scholar 

  117. Hiesiger EM, Green SB, Shapiro WR et al (1995) Results of a randomized trial comparing intra-arterial cisplatin and intravenous PCNU for the treatment of primary brain tumors in adults: Brain Tumor Cooperative Group trial 8420A. J Neurooncol 25(2):143–154

    CAS  PubMed  Google Scholar 

  118. Basso U, Lonardi S, Brandes AA (2002) Is intra-arterial chemotherapy useful in high-grade gliomas? Expert Rev Anticancer Ther 2(5):507–519

    CAS  PubMed  Google Scholar 

  119. Neuwelt EA, Howieson J, Frenkel EP et al (1986) Therapeutic efficacy of multiagent chemotherapy with drug delivery enhancement by blood–brain barrier modification in glioblastoma. Neurosurgery 19(4):573–582

    CAS  PubMed  Google Scholar 

  120. Follézou JY, Fauchon F, Chiras J (1989) Intraarterial infusion of carboplatin in the treatment of malignant gliomas: a phase II study. Neoplasma 36(3):349–352

    PubMed  Google Scholar 

  121. Stewart DJ, Belanger JM, Grahovac Z et al (1992) Phase I study of intracarotid administration of carboplatin. Neurosurgery 30(4):512–516

    CAS  PubMed  Google Scholar 

  122. Neuwelt EA (2004) Mechanisms of disease: the BBB. Neurosurgery 54:131–140

    PubMed  Google Scholar 

  123. Rapoport SI (2000) Osmotic opening of the blood–brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 20(2):217–230

    CAS  PubMed  Google Scholar 

  124. Nagashima T, Ikeda K, Wu S et al (1997) The mechanism of reversible osmotic opening of the blood–brain barrier: role of intracellular calcium ion in capillary endothelial cells. Acta Neurochir Suppl 70:231–233

    CAS  PubMed  Google Scholar 

  125. Siegal T, Rubinstein R, Bokstein F et al (2000) In vivo assessment of the window of barrier opening after osmotic blood–brain barrier disruption in humans. J Neurosurg 92(4):599–605

    CAS  PubMed  Google Scholar 

  126. Cloughesy TF, Black KL (1995) Pharmacological blood–brain barrier modification for selective drug delivery. J Neurooncol 26:125–132

    CAS  PubMed  Google Scholar 

  127. Bartus RT, Elliott PJ, Dean RL et al (1996) Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp Neurol 142(1):14–28

    CAS  PubMed  Google Scholar 

  128. Emerich DF, Dean RL, Snodgrass P et al (2001) Bradykinin modulation of tumor vasculature: II. activation of nitric oxide and phospholipase A2/prostaglandin signaling pathways synergistically modifies vascular physiology and morphology to enhance delivery of chemotherapeutic agents to tumors. J Pharmacol Exp Ther 296(2):632–641

    CAS  PubMed  Google Scholar 

  129. Sanovich E, Bartus RT, Friden PM et al (1995) Pathway across blood–brain barrier opened by the bradykinin agonist, RMP-7. Brain Res 705(1–2):125–135

    CAS  PubMed  Google Scholar 

  130. Emerich DF, Snodgrass P, Dean R et al (1999) Enhanced delivery of carboplatin into brain tumours with intravenous Cereport (RMP-7): dramatic differences and insight gained from dosing parameters. Br J Cancer 80(7):964–970

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Black KL, Cloughesy T, Huang SC et al (1997) Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediaminetetraacetic acid into human gliomas. J Neurosurg 86(4):603–609

    CAS  PubMed  Google Scholar 

  132. Gregor A, Lind M, Newman H et al (1999) Phase II studies of RMP-7 and carboplatin in the treatment of recurrent high grade glioma. RMP-7 European Study Group. J Neurooncol 44(2):137–145

    CAS  PubMed  Google Scholar 

  133. Grossman SA, Trump DL, Chen DC et al (1982) Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using 111indium-DTPA ventriculography. Am J Med 73(5):641–647

    CAS  PubMed  Google Scholar 

  134. Grossman SA, Reinhard CS, Loats HL (1989) The intracerebral penetration of intraventricularly administered methotrexate: a quantitative autoradiographic study. J Neurooncol 7(4):319–328

    CAS  PubMed  Google Scholar 

  135. Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263(5580):797–800

    CAS  PubMed  Google Scholar 

  136. Bobo RH, Laske DW, Akbasak A et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080

    CAS  PubMed  Google Scholar 

  137. Bidros DS, Vogelbaum MA (2009) Novel drug delivery strategies in neuro-oncology. Neurotherapeutics 6(3):539–546

    CAS  PubMed  Google Scholar 

  138. Chen MY, Lonser RR, Morrison PF et al (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90(2):315–320

    CAS  PubMed  Google Scholar 

  139. Vogelbaum MA (2005) Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J Neurooncol 83(1):97–109

    Google Scholar 

  140. Lidar Z, Mardor Y, Jonas T et al (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100(3):472–479

    CAS  PubMed  Google Scholar 

  141. de Lange EC, de Vries JD, Zurcher C et al (1995) The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm Res 12(12):1924–1931

    PubMed  Google Scholar 

  142. Mishani E, Abourbeh G (2007) Cancer molecular imaging: radionuclide-based biomarkers of the epidermal growth factor receptor (EGFR). Curr Top Med Chem 7(18):1755–1772

    CAS  PubMed  Google Scholar 

  143. Wu GN, Ford JM, Alger JR (2006) MRI measurement of the uptake and retention of motexafin gadolinium in glioblastoma multiforme and uninvolved normal human brain. J Neurooncol 77(1):95–103

    CAS  PubMed  Google Scholar 

  144. Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Grossman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balmanoukian, A., Grossman, S.A. (2014). Blood–Brain Barrier and CNS Malignancy. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics