Skip to main content

Advertisement

Log in

Quantitative Analysis of Target Coverage and Germinal Center Response by a CXCL13 Neutralizing Antibody in a T-Dependent Mouse Immunization Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Study the impact of CXCL13 neutralization on germinal center (GC) response in vivo, and build quantitative relationship between target coverage and pharmacological effects at the target tissue.

Methods

An anti-CXCL13 neutralizing monoclonal antibody was dosed in vivo in a T-dependent mouse immunization (TDI) model. A quantitative site-of-action (SoA) model was developed to integrate antibody PK and total CXCL13 levels in serum and spleen towards estimating target coverage as a function of dose. To aid in the SoA model development, a radio-labeled study using [I125] CXCL13 was conducted in mice. Model estimated target coverage was linked to germinal center response using a sigmoidal inhibitory effect model.

Results

In vivo studies demonstrated that CXCL13 inhibition led to an architectural change in B-cell follicles, dislocation of GCs and a significant reduction in the GC absolute numbers per square area (GC/mm2). The SoA modeling analysis indicated that ~79% coverage in spleen was required to achieve 50% suppression of GC/mm2. The 3 mg/kg dose with 52% spleen coverage resulted in no PD suppression, whereas 30 mg/kg with 93% coverage achieved close to maximum PD suppression, highlighting the steepness of PD response.

Conclusions

This study showcases an application of SoA modeling towards a quantitative understanding of CXCL13 pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CXCL13:

CXC chemokine 13

ELISA:

Enzyme-linked immunosorbent assay

GC:

Germinal center

GC/mm2 :

Germinal centers per mm2

PD:

Pharmacodynamics

PK:

Pharmacokinetics

SoA:

Site of action

TDI:

T-dependent immunization model

REFERENCES

  1. Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406(6793):309–14.

    Article  CAS  PubMed  Google Scholar 

  2. Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL, Tang HL, et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev. 2000;176:181–93.

    Article  CAS  PubMed  Google Scholar 

  3. Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med. 1998;187(4):655–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000;192(11):1553–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Amft N, Curnow SJ, Scheel-Toellner D, Devadas A, Oates J, Crocker J, et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjogren’s syndrome. Arthritis Rheum. 2001;44(11):2633–41.

    Article  CAS  PubMed  Google Scholar 

  6. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain J Neurol. 2006;129(Pt 1):200–11.

    Google Scholar 

  7. Rosengren S, Wei N, Kalunian KC, Kavanaugh A, Boyle DL. CXCL13: a novel biomarker of B-cell return following rituximab treatment and synovitis in patients with rheumatoid arthritis. Rheumatology (Oxford, England). 2011;50(3):603–10.

    Article  CAS  Google Scholar 

  8. Steinmetz OM, Velden J, Kneissler U, Marx M, Klein A, Helmchen U, et al. Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int. 2008;74(4):448–57.

    Article  CAS  PubMed  Google Scholar 

  9. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol (Zurich, Switzerland). 2004;14(2):164–74.

    Article  Google Scholar 

  10. Shi K, Hayashida K, Kaneko M, Hashimoto J, Tomita T, Lipsky PE, et al. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol (Baltimore, Md : 1950). 2001;166(1):650–5.

    CAS  Google Scholar 

  11. Lee HT, Shiao YM, Wu TH, Chen WS, Hsu YH, Tsai SF, et al. Serum BLC/CXCL13 concentrations and renal expression of CXCL13/CXCR5 in patients with systemic lupus erythematosus and lupus nephritis. J Rheumatol. 2010;37(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  12. Finch DK, Ettinger R, Karnell JL, Herbst R, Sleeman MA. Effects of CXCL13 inhibition on lymphoid follicles in models of autoimmune disease. Eur J Clin Investig. 2013;43(5):501–9.

    Article  CAS  Google Scholar 

  13. Kamens JS. InventorCXCL13 binding proteins. USA patent US 2008/0227704 A1. 2008.

  14. Chan PL, Jacqmin P, Lavielle M, McFadyen L, Weatherley B. The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects. J Pharmacokinet Pharmacodyn. 2011;38(1):41–61.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gibiansky L, Gibiansky E. Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn. 2010;37(4):323–46.

    Article  CAS  PubMed  Google Scholar 

  16. Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 2008;35(5):573–91.

    Article  CAS  PubMed  Google Scholar 

  17. Mager DE. Target-mediated drug disposition and dynamics. Biochem Pharmacol. 2006;72(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  18. Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96.

    Article  CAS  PubMed  Google Scholar 

  19. Bocci V. Interleukins. Clinical pharmacokinetics and practical implications. Clin Pharmacokinet. 1991;21(4):274–84.

    Article  CAS  PubMed  Google Scholar 

  20. Blick M, Sherwin SA, Rosenblum M, Gutterman J. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res. 1987;47(11):2986–9.

    CAS  PubMed  Google Scholar 

  21. Gibiansky L, Frey N. Linking interleukin-6 receptor blockade with tocilizumab and its hematological effects using a modeling approach. J Pharmacokinet Pharmacodyn. 2012;39(1):5–16.

    Article  CAS  PubMed  Google Scholar 

  22. Lowe PJ, Renard D. Omalizumab decreases IgE production in patients with allergic (IgE-mediated) asthma; PKPD analysis of a biomarker, total IgE. Br J Clin Pharmacol. 2011;72(2):306–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res. 2006;23(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  24. Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA, et al. The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther. 2010;333(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  25. Luu KT, Bergqvist S, Chen E, Hu-Lowe D, Kraynov E. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J Pharmacol Exp Ther. 2012;341(3):702–8.

    Article  CAS  PubMed  Google Scholar 

  26. Vugmeyster Y, Rohde C, Perreault M, Gimeno RE, Singh P. Agonistic TAM-163 antibody targeting Tyrosine kinase receptor-B: applying mechanistic modeling to enable preclinical to clinical translation and guide clinical trial design. mAbs. 2013;5(3):373–83.

    Google Scholar 

  27. Wang B, Lau YY, Liang M, Vainshtein I, Zusmanovich M, Lu H, et al. Mechanistic modeling of antigen sink effect for mavrilimumab following intravenous administration in patients with rheumatoid arthritis. J Clin Pharmacol. 2012;52(8):1150–61.

    Article  CAS  PubMed  Google Scholar 

  28. Lachmann HJ, Lowe P, Felix SD, Rordorf C, Leslie K, Madhoo S, et al. In vivo regulation of interleukin 1beta in patients with cryopyrin-associated periodic syndromes. J Exp Med. 2009;206(5):1029–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hsei V, Deguzman GG, Nixon A, Gaudreault J. Complexation of VEGF with bevacizumab decreases VEGF clearance in rats. Pharm Res. 2002;19(11):1753–6.

    Article  CAS  PubMed  Google Scholar 

  30. Vugmeyster Y, DeFranco D, Szklut P, Wang Q, Xu X. Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci. 2010;99(2):1028–45.

    CAS  PubMed  Google Scholar 

  31. Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT, et al. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  32. Staack RF, Jordan G, Heinrich J. Mathematical simulations for bioanalytical assay development: the (un-)necessity and (im-)possibility of free drug quantification. Bioanalysis. 2012;4(4):381–95.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors wish to thank Quintus Medley, Ph.D. and Jill Wright, Ph.D. for reviewing the manuscript and proving useful suggestions.

This study was supported by Pfizer, Inc. All authors were employees of Pfizer at the time of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodfuehrer, J., Rankin, A., Edmonds, J. et al. Quantitative Analysis of Target Coverage and Germinal Center Response by a CXCL13 Neutralizing Antibody in a T-Dependent Mouse Immunization Model. Pharm Res 31, 635–648 (2014). https://doi.org/10.1007/s11095-013-1185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1185-2

KEY WORDS

Navigation