Skip to main content
Log in

Promoting Antitumor Activities of Hydroxycamptothecin by Encapsulation into Acid-Labile Nanoparticles Using Electrospraying

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Acid-labile nanoparticles are proposed to enhance the tumor targeting and anti-tumor therapy of hydroxycamptothecin (HCPT) in response to the acidic microenvironment within cells and tumor tissues.

Methods

HCPT was entrapped into matrix polymers containing acid-labile segments and galactose moieties (PGBELA) through an electrospraying technique. The antitumor activities of HCPT-loaded nanoparticles were evaluated both on HepG2 cells and after intravenous injection into H22 tumor-bearing mice.

Results

The electrosprayed nanoparticles were obtained with enhanced loading efficiency and extended release of HCPT compared with other nanoparticle preparation methods. The acid-lability and targeting capability of PGBELA nanoparticles resulted in a 5 times higher inhibitory activity after incubation in pH 6.8 media compared to that of pH 7.4. Animal studies indicated that both the blood circulation time and tumor distribution of PGBELA nanoparticles were significantly increased. HCPT/PGBELA nanoparticles indicated a superior in vivo antitumor activity and fewer side effects than other treatments on the basis of tumor growth, animal survival rate, tissue necrosis and cell apoptosis evaluation.

Conclusion

Biodegradable PGBELA nanoparticles are capable of achieving site-specific drug delivery by active targeting and triggered release by acidic pH both in tumor tissues and after internalization within tumor cells, thereby providing a novel strategy for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Huynh H. Molecularly targeted therapy in hepatocellular carcinoma. Biochem Pharmacol. 2010;80:550–60.

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y, Jin C, Li H, He Y, Liu Z, Bai L, et al. Improved radiosensitizing effect of the combination of etanidazole and paclitaxel for hepatocellular carcinoma in vivo. Exp Ther Med. 2012;3:299–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Wagner E. Programmed drug delivery: nanosystems for tumor targeting. Expert Opin Biol Ther. 2007;7:587–93.

    Article  CAS  PubMed  Google Scholar 

  4. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–46.

    Article  CAS  PubMed  Google Scholar 

  5. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30:226–32.

    Article  PubMed  Google Scholar 

  6. Motornov M, Roiter Y, Tokarev I, Minko S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci. 2010;35:174–211.

    Article  CAS  Google Scholar 

  7. Volk T, Jähde E, Fortmeyer HP, Glüsenkamp KH, Rajewsky MF. pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer. 1993;68:492–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996;12:575–625.

    Article  CAS  PubMed  Google Scholar 

  9. Tian L, Bae YH. Cancer nanomedicines targeting tumor extracellular pH. Colloids Surf B. 2012;99:116–26.

    Article  CAS  Google Scholar 

  10. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126:187–204.

    Article  CAS  PubMed  Google Scholar 

  11. Duan C, Zhang D, Wang F, Zheng D, Jia L, Feng F, et al. Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm. 2011;409:252–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44.

    Article  CAS  PubMed  Google Scholar 

  13. Lee YH, Mei F, Bai MY, Zhao SL, Chen DR. Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Control Release. 2010;45:58–65.

    Article  Google Scholar 

  14. Enayati M, Chang MW, Bragman F, Edirisinghe M, Stride E. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf A. 2011;382:154–64.

    Article  CAS  Google Scholar 

  15. Wu YQ, Clark RL. Controllable porous polymer particles generated by electrospraying. J Colloid Interface Sci. 2007;310:529–35.

    Article  CAS  PubMed  Google Scholar 

  16. Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev. 2009;61:1043–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ding LN, Lee T, Wang CH. Fabrication of monodispersed taxol-loaded particles using electrohydrodynamic atomization. J Control Release. 2005;102:395–413.

    Article  CAS  PubMed  Google Scholar 

  18. Wu YQ, MacKay JA, McDaniel JR, Chilkoti A, Clark RL. Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules. 2009;10:19–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharm. 2010;7:307–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chen Z, Cai XJ, Yang Y, Wu GN, Liu YW, Chen F, et al. Promoted transfection efficiency of pDNA polyplexes-loaded biodegradable microparticles containing acid-labile segments and galactose grafts. Pharm Res. 2012;29:471–82.

    Article  CAS  PubMed  Google Scholar 

  21. Cui WG, Qi MB, Li XH, Huang SZ, Zhou SB, Weng J. Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. Int J Pharm. 2008;361:47–55.

    Article  CAS  PubMed  Google Scholar 

  22. Deng XM, Li XH, Yuan ML, Xiong CD, Huang ZT, Jia WX, et al. Optimization of preparative parameters for poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped Vibrio cholera antigens. J Control Release. 1999;58:123–31.

    Article  CAS  PubMed  Google Scholar 

  23. Luo XM, Xu GS, Song HX, Yang SX, Yan SL, Jia GQ, et al. Promoted antitumor activities of acid-labile electrospun fibers loaded with hydroxycamptothecin via intratumoral implantation. Eur J Pharm Biopharm. 2012;82:545–53.

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Jiang ZZ, Zhang SM, Saltzman WM. Poly(ω-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials. 2009;30:5707–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhang SL, Kawakami K, Yamamoto M, Masaoka Y, Kataoka M, Yamashita S, et al. Coaxial electrospray formulations for improving oral absorption of a poorly water-soluble drug. Mol Pharm. 2011;8:807–13.

    Article  PubMed  Google Scholar 

  26. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22.

    Article  CAS  PubMed  Google Scholar 

  27. Jaworek A. Micro- and nanoparticle production by electrospraying. Powder Technol. 2007;176:18–35.

    Article  CAS  Google Scholar 

  28. Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol®). J Control Release. 2002;80:129–44.

    Article  CAS  PubMed  Google Scholar 

  29. Derakhshandeh K, Erfan M, Dadashzadeh S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Eur J Pharm Biopharm. 2007;66:34–41.

    Article  CAS  PubMed  Google Scholar 

  30. Vauthier C, Bouchema K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26:1025–58.

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Li C. pH responsive fluorescence nanoprobe imaging of tumors by sensing the acidic microenvironment. J Mater Chem. 2011;21:15862–71.

    Article  CAS  Google Scholar 

  32. Miura H, Onishi H, Sasatsu M, Machida Y. Antitumor characteristics of methoxypolyethylene glycol–poly(DL-lactic acid) nanoparticles containing camptothecin. J Control Release. 2004;97:101–13.

    Article  CAS  PubMed  Google Scholar 

  33. Dora CL, Alvarez-Silva M, Trentin AG, de Faria TJ, Fernandes D, da Costa R, et al. Evaluation of antimetastatic activity and systemic toxicity of camptothecin loaded microspheres in mice injected with B16-F10 melanoma cells. J Pharm Pharm Sci. 2006;9:22–31.

    CAS  PubMed  Google Scholar 

  34. Smallbone K, Gavaghan DJ, Gatenby RA, Maini PK. The role of acidity in solid tumour growth and invasion. J Theor Biol. 2005;235:476–84.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang LY, Yang M, Wang Q, Yuan L, Guo R, Jiang XQ, et al. 10-Hydroxycamptothecin loaded nanoparticles: preparation and antitumor activity in mice. J Control Release. 2007;119:153–62.

    Article  CAS  PubMed  Google Scholar 

  36. Hu ZL, Guo XQ, Yu Q, Qiu L, Li JZ, Ying K, et al. Down-regulation of adenine nucleotide translocase 3 and its role in camptothecin-induced apoptosis in human hepatoma QGY7703 cells. FEBS Lett. 2009;583:383–8.

    Article  CAS  PubMed  Google Scholar 

  37. Li XL, Zhen DH, Lu XW, Xu HE, Shao Y, Xue QP, et al. Enhanced cytotoxicity and activation of ROS-dependent c-Jun NH2-terminal kinase and caspase-3 by low doses of tetrandrine-loaded nanoparticles in Lovo cells–A possible Trojan strategy against cancer. Eur J Pharm Biopharm. 2010;75:334–40.

    Article  CAS  PubMed  Google Scholar 

  38. Oh KS, Song JY, Cho SH, Lee BS, Kim SY, Kim K, et al. Paclitaxel-loaded pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy. J Control Release. 2010;148:344–50.

    Article  CAS  PubMed  Google Scholar 

  39. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5:496–504.

    Article  CAS  PubMed  Google Scholar 

  40. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.

    Article  CAS  Google Scholar 

  41. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    CAS  PubMed  Google Scholar 

  42. Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 2003;12:320–7.

    Article  PubMed  Google Scholar 

  43. Rodríguez-Hernández A, Brea-Calvo G, Fernández-Ayala DJM, Cordero M, Navas P, Sánchez-Alcázar JA. Nuclear caspase-3 and capase-7 activation, and poly(ADP-ribose) polymerase cleavage are early events in camptothecin-induced apoptosis. Apoptosis. 2006;11:141–59.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Xiaoming Luo and Guoqing Jia contributed equally to the work. The authors thank Dr. Manfred F. Maitz from Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden for his useful comments and language editing. This work was supported by National Natural Science Foundation of China (51073130 and 21274117), Specialized Research Fund for the Doctoral Program of Higher Education (20050613025 and 20120184110004), and Scientific and Technical Supporting Programs of Sichuan Province (2013SZ0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Li.

Electronic Supplementary Material

The orthogonal experimental design to quantitatively evaluate and statistically analyze the effects of electrospraying parameters on the nanoparticle properties was included in the supplementary material.

ESM 1

(DOC 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Jia, G., Song, H. et al. Promoting Antitumor Activities of Hydroxycamptothecin by Encapsulation into Acid-Labile Nanoparticles Using Electrospraying. Pharm Res 31, 46–59 (2014). https://doi.org/10.1007/s11095-013-1130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1130-4

KEY WORDS

Navigation