Skip to main content
Log in

Development and Characterization of Nanostructured Mists with Potential for Actively Targeting Poorly Water-Soluble Compounds into the Lungs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To formulate nanoemulsions (NE) with potential for delivering poorly water-soluble drugs to the lungs.

Method

A self nanoemulsifying composition consisting of cremophor RH 40, PEG 400 and labrafil M 2125 CS was selected after screening potential excipients. The solubility of carbamazepine, a poorly water-soluble drug, was tested in the formulation components. Oil-in-water (o/w) NEs were characterized using dynamic light scattering, electrophoretic light scattering, transmission electron microscopy (TEM) and differential scanning calorimetry. NEs were nebulized into a mist using a commercial nebulizer and characterized using laser diffraction and TEM. An aseptic method was developed for preparing sterile NEs. Biocompatibility of the formulation was evaluated on NIH3T3 cells using MTT assay. In vitro permeability of the formulation was tested in zebra fish eggs, HeLa cells, and porcine lung tissue.

Results

NEs had neutrally charged droplets of less than 20 nm size. Nebulized NEs demonstrated an o/w nanostructure. The mist droplets were of size less than 5 μm. Sterility testing and cytotoxicity results validated that the NE was biocompatible and sterile. In vitro tests indicated oil nanodroplets penetrating intracellularly through biological membranes.

Conclusion

The nanoemulsion mist has the potential for use as a pulmonary delivery system for poorly water-soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CBZ:

carbamazepine

CLSM:

confocal laser scanning microscope

DAPI:

4′,6-diamidino-2-phenylindole

DLS:

dynamic light scattering

DMEM:

Dulbecco’s Modified Eagle Medium

ELS:

electrophoretic light scattering

FBS:

fetal bovine serum

FTM:

fluid thioglycollate medium

He-Ne laser:

Helium-Neon laser

km ratio:

surfactant/co-surfactant ratio

MH:

Mueller Hinton

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NE:

nanoemulsions

OCT:

optimal cutting temperature

PBS:

phosphate buffered saline

SCD:

soybean casein digest medium

SNE:

self-nanoemulsifying

SNEDDS:

self-nanoemulsifying drug delivery system

References

  1. Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA. Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm. 2002;235(1–2):247–65.

    Article  PubMed  CAS  Google Scholar 

  2. Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66(2):227–43.

    Article  PubMed  CAS  Google Scholar 

  3. Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443–8.

    Article  PubMed  CAS  Google Scholar 

  4. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.

    Article  PubMed  CAS  Google Scholar 

  5. Kawakami K, Yoshikawa T, Hayashi T, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drugs: II. In vivo study. J Control Release. 2002;81(1–2):75–82.

    Article  PubMed  CAS  Google Scholar 

  6. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.

    Article  PubMed  CAS  Google Scholar 

  7. Stevens RE, Limsakun T, Evans G, Mason Jr DH. Controlled, multidose, pharmacokinetic evaluation of two extended-release carbamazepine formulations (Carbatrol and Tegretol-XR). J Pharm Sci. 1998;87(12):1531–4.

    Article  PubMed  CAS  Google Scholar 

  8. El-Zein H, Riad L, El-Bary AA. Enhancement of carbamazepine dissolution: in vitro and in vivo evaluation. Int J Pharm. 1998;168(2):209–20.

    Article  CAS  Google Scholar 

  9. Custodio JM, Wu CY, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008;60(6):717–33.

    Article  PubMed  CAS  Google Scholar 

  10. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  11. Hoover JL, Rush BD, Wilkinson KF, Day JS, Burton PS, Vidmar TJ, et al. Peptides are better absorbed from the lung than the gut in the rat. Pharm Res. 1992;9(8):1103–6.

    Article  PubMed  CAS  Google Scholar 

  12. Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1–2):65–73.

    Article  PubMed  CAS  Google Scholar 

  13. Craig DQM, Lievens HSR, Pitt KG, Storey DE. An investigation into the physico-chemical properties of self-emulsifying systems using low frequency dielectric spectroscopy, surface tension measurements and particle size analysis. Int J Pharm. 1993;96(1–3):147–55.

    Article  CAS  Google Scholar 

  14. United States Pharmacopeial Convention. The United States pharmacopeia: the national formulary. Rockville: United States Pharmacopeial Convention; 2006.

    Google Scholar 

  15. Nesamony J, Zachar CL, Jung R, Williams FE, Nauli S. Preparation, characterization, sterility validation, and in vitro cell toxicity studies of microemulsions possessing potential parenteral applications. Drug Dev Ind Pharm. 2012;5:5.

    Google Scholar 

  16. Kumar S, Singh HN. Competitive solubilization of Sudan IV and anthracene in micellar systems. Colloids Surf. 1992;69(1):1–4.

    Article  CAS  Google Scholar 

  17. Krishna SM, Seto SW, Moxon JV, Rush C, Walker PJ, Norman PE, et al. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. Am J Pathol. 2012;181(2):706–18.

    Article  PubMed  CAS  Google Scholar 

  18. Rebane R, Leito I, Yurchenko S, Herodes K. A review of analytical techniques for determination of Sudan I-IV dyes in food matrixes. J Chromatogr A. 2010;1217(17):2747–57.

    Article  PubMed  CAS  Google Scholar 

  19. Behrens I, Pena AIV, Alonso MJ, Kissel T. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res. 2002;19(8):1185–93.

    Article  PubMed  CAS  Google Scholar 

  20. Hahnenkamp I, Graubner G, Gmehling J. Measurement and prediction of solubilities of active pharmaceutical ingredients. Int J Pharm. 2010;388(1–2):73–81.

    Article  PubMed  CAS  Google Scholar 

  21. Abid SK, Hamid SM, Sherrington DC. Micellization and surface-activity of long-chain monoquaternary and diquaternary ammonium salts. J Colloid Interface Sci. 1987;120(1):245–55.

    Article  CAS  Google Scholar 

  22. Kibbe AH. Handbook of pharmaceutical excipients. Washington, DC: American Pharmaceutical Association; 2000.

  23. Li G, Fan Y, Li X, Wang X, Li Y, Liu Y, et al. In vitro and in vivo evaluation of a simple microemulsion formulation for propofol. Int J Pharm. 2012;425(1–2):53–61.

    Article  PubMed  CAS  Google Scholar 

  24. Shinoda K, Shibata Y, Lindman B. Interfacial tensions for lecithin microemulsions including the effect of surfactant and polymer addition. Langmuir. 1993;9(5):1254–7.

    Article  CAS  Google Scholar 

  25. Kahlweit M, Strey R, Schomaecker R, Haase D. General patterns of the phase behavior of mixtures of water, nonpolar solvents, amphiphiles, and electrolytes. 2. Langmuir. 1989;5(2):305–15.

    Article  CAS  Google Scholar 

  26. Sha X, Yan G, Wu Y, Li J, Fang X. Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. Eur J Pharm Sci. 2005;24(5):477–86.

    Article  PubMed  CAS  Google Scholar 

  27. Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishihara Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs I. Prescription design. J Control Release. 2002;81(1–2):65–74.

    Article  PubMed  CAS  Google Scholar 

  28. Gershanik T, Benzeno S, Benita S. Interaction of a self-emulsifying lipid drug delivery system with the everted rat intestinal mucosa as a function of droplet size and surface charge. Pharm Res. 1998;15(6):863–9.

    Article  PubMed  CAS  Google Scholar 

  29. Adjei A, Garren J. Pulmonary delivery of peptide drugs: effect of particle size on bioavailability of leuprolide acetate in healthy male volunteers. Pharm Res. 1990;7(6):565–9.

    Article  PubMed  CAS  Google Scholar 

  30. Kotyla T, Kuo F, Moolchandani V, Wilson T, Nicolosi R. Increased bioavailability of a transdermal application of a nano-sized emulsion preparation. Int J Pharm. 2008;347(1–2):144–8.

    Article  PubMed  CAS  Google Scholar 

  31. Kommuru TR, Gurley B, Khan MA, Reddy IK. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 2001;212(2):233–46.

    Article  PubMed  CAS  Google Scholar 

  32. Gabizon A, Papahadjopoulos D. The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta. 1992;10(1):94–100.

    Google Scholar 

  33. Park K-M, Kim C-K. Preparation and evaluation of flurbiprofen-loaded microemulsion for parenteral delivery. Int J Pharm. 1999;181(2):173–9.

    Article  PubMed  CAS  Google Scholar 

  34. Kotmakchiev M, Kantarci G, Cetintas VB, Ertan G. Cytotoxicity of a novel oil/water microemulsion system loaded with mitomycin-C in in vitro lung cancer models. Drug Dev Res. 2012;73(4):185–95.

    Article  CAS  Google Scholar 

  35. Katzhendler I, Azoury R, Friedman M. The effect of egg albumin on the crystalline properties of carbamazepine in sustained release hydrophilic matrix tablets and in aqueous solutions. J Control Release. 2000;65(3):331–43.

    Article  PubMed  CAS  Google Scholar 

  36. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang D, Hamilton PD, Kao JLF, Venkataraman S, Wooley KL, Ravi N. Formation of nanogel aggregates by an amphiphilic cholesteryl-poly(amidoamine) dendrimer in aqueous media. J Polymer Sci, Part A: Polymer Chem. 2007;45(12):2569–75.

    Article  CAS  Google Scholar 

  38. Sintov AC, Levy HV, Botner S. Systemic delivery of insulin via the nasal route using a new microemulsion system: In vitro and in vivo studies. J Control Release. 2010;148(2):168–76.

    Article  PubMed  CAS  Google Scholar 

  39. Elversson J, Millqvist-Fureby A, Alderborn G, Elofsson U. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J Pharm Sci. 2003;92(4):900–10.

    Article  PubMed  CAS  Google Scholar 

  40. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–71.

    Article  PubMed  CAS  Google Scholar 

  41. Nesamony J, Zachar CL, Jung R, Williams FE, Nauli S. Preparation, characterization, sterility validation, and in vitro cell toxicity studies of microemulsions possessing potential parenteral applications. Drug Dev Ind Pharm. 2013;39(2):240–51.

    Article  PubMed  CAS  Google Scholar 

  42. Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987;56(3):279–85.

    Article  PubMed  CAS  Google Scholar 

  43. Lo J-T, Chen B-H, Lee T-M, Han J, Li J-L. Self-emulsifying O/W formulations of paclitaxel prepared from mixed nonionic surfactants. J Pharm Sci. 2010;99(5):2320–32.

    PubMed  CAS  Google Scholar 

  44. Bonsignorio D, Perego L, Del Giacco L, Cotelli F. Structure and macromolecular composition of the zebrafish egg chorion. Zygote. 1996;4(2):101–8.

    Article  PubMed  CAS  Google Scholar 

  45. Levitt JM, Baldwin A, Papadakis A, Puri S, Xylas J, Munger K, et al. Intrinsic fluorescence and redox changes associated with apoptosis of primary human epithelial cells. J Biomed Opt. 2006;11(6):064012/1–/10.

    Article  CAS  Google Scholar 

  46. Rothkotter H-J. Anatomical particularities of the porcine immune system–a physician’s view. Dev Comp Immunol. 2009;33(3):267–72.

    Article  PubMed  Google Scholar 

  47. Williamson DH, Fennell DJ. The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol. 1975;12:335–51.

    Google Scholar 

Download references

Acknowledgments and Disclosures

This research was performed with support from start-up funds made available by the Department of Pharmacy Practice at the University of Toledo College of Pharmacy and Pharmaceutical Sciences. We are grateful to Dr. Joseph Lawrence, Center for Sensor and Materials Characterization, University of Toledo College of Engineering for his assistance during the TEM work. We also thank Ms. Maki Takahashi, Department of Pharmacology, University of Toledo College of Pharmacy and Pharmaceutical Sciences for her help with cell cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Nesamony.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental figure 1

Schematic diagram depicting generation of the nanostructured mist (JPEG 9 kb)

High resolution image (TIFF 1060 kb)

Supplemental figure 2

3-day CLSM images obtained by virtual optical cross sectioning through a zebra fish egg exposed to 100 mg/ml Sudan IV loaded NE for 6 h (JPEG 11 kb)

High resolution image (TIFF 1160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesamony, J., Kalra, A., Majrad, M.S. et al. Development and Characterization of Nanostructured Mists with Potential for Actively Targeting Poorly Water-Soluble Compounds into the Lungs. Pharm Res 30, 2625–2639 (2013). https://doi.org/10.1007/s11095-013-1088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1088-2

KEY WORDS

Navigation