Skip to main content
Log in

Interfacial Interaction between Transmembrane Ocular Mucins and Adhesive Polymers and Dendrimers Analyzed by Surface Plasmon Resonance

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Development of the first in vitro method based on biosensor chip technology designed for probing the interfacial interaction phenomena between transmembrane ocular mucins and adhesive polymers and dendrimers intended for ophthalmic administration.

Methods

The surface plasmon resonance (SPR) technique was used. A transmembrane ocular mucin surface was prepared on the chip surface and characterized by QCM-D (Quartz Crystal Microbalance with Dissipation) and XPS (X-ray photoelectron spectroscopy). The mucoadhesive molecules tested were: hyaluronic acid (HA), carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC), chitosan (Ch) and polyamidoamine dendrimers (PAMAM).

Results

While Ch originated interfacial interaction with ocular transmembrane mucins, for HA, CMC and HPMC, chain interdiffusion seemed to be mandatory for bioadherence at the concentrations used in ophthalmic clinical practise. Interestingly, PAMAM dendrimers developed permanent interfacial interactions with transmembrane ocular mucins whatever their surface chemical groups, showing a relevant importance of co-operative effect of these multivalent systems. Polymers developed interfacial interactions with ocular membrane-associated mucins in the following order: Ch(1 %) > G4PAMAM-NH2(2 %) = G4PAMAM-OH(2 %) > G3.5PAMAM-COOH(2 %)>> CMC(0.5 %) = HA(0.2 %) = HPMC(0.3 %).

Conclusions

The method proposed is useful to discern between the mucin-polymer chemical interactions at molecular scale. Results reinforce the usefulness of chitosan and dendrimers as polymers able to increase the retention time of drugs on the ocular surface and hence their bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

Abbreviations

Ch:

chitosan

CMC:

carboxymethyl cellulose

HA:

hyaluronic acid

HCLE:

telomerase-immortalized human corneal-limbal epithelial

HPMC:

hydroxypropylmethyl cellulose

IEP:

isoelectric point

PAMAM:

polyamidoamine dendrimers

QCM-D:

quartz crystal microbalance with dissipation

RU:

resonance units

SPR:

surface plasmon resonance

XPS:

x-ray photoelectron spectroscopy

REFERENCES

  1. Durrani AM, Farr SJ, Kellaway IW. Influence of molecular weight and formulation pH on the precorneal clearance rate of hyaluronic acid in the rabbit eye. Int J Pharmaceut. 1995;118:243–50.

    Article  CAS  Google Scholar 

  2. Hartmann V, Keipert S. Physico-chemical, in vitro and in vivo characterisation of polymers for ocular use. Pharmazie. 2000;55(6):440–3.

    PubMed  CAS  Google Scholar 

  3. Snibson GR, Greaves JL, Soper NDW, et al. Ocular surface residence times of artificial tear solutions. Cornea. 1992;11(4):288–93.

    Article  PubMed  CAS  Google Scholar 

  4. Mantelli F, Argüeso P. Functions of ocular surface mucins in health and disease. Curr Opin Allergy Clin Immunol. 2008;8(5):477–83.

    Article  PubMed  CAS  Google Scholar 

  5. Guzman-Aranguez A, Argüeso P. Structure and biological roles of mucin-type O-glycans at the ocular surface. Ocul Surf. 2010;8(1):8–17.

    Article  PubMed  Google Scholar 

  6. Gipson IK, Hori Y, Argüeso P. Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf. 2004;2(2):131–48.

    Article  PubMed  Google Scholar 

  7. Bin Choy Y, Park JH, Prausnitz MR. Mucoadhesive microparticles engineered of ophthalmic drug delivery. J Phys Chem Solid. 2008;69(5–6):1533–6.

    Article  Google Scholar 

  8. Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Contr Release. 2005;102(1):23–38.

    Article  CAS  Google Scholar 

  9. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta. 2008;620:8–26.

    Article  PubMed  CAS  Google Scholar 

  10. Takeuchi H, Thongborisute J, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. Novel mucoadhesion test for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev. 2005;57:1583–94.

    Article  PubMed  CAS  Google Scholar 

  11. Chayed S, Winnik M. In vitro evaluation of the mucoadhesive properties of polysaccharide-based nanoparticulate oral drug delivery systems. Eur J Pharm Biopharm. 2007;65:363–70.

    Article  PubMed  CAS  Google Scholar 

  12. Gipson IK, Spurr-Michaud S, Argüeso P, Tisdale A, Ng TF, Russo CL. Mucin gene expression in immortalized human corneal-limbal and conjunctival epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44(6):2496–506.

    Article  PubMed  Google Scholar 

  13. Argüeso P, Gipson IK. Quantitative analysis of mucins in mucosal secretions using indirect enzyme-linked immunosorbent assay. Meth Mol Biol. 2006;347:277–88.

    Google Scholar 

  14. Thornton DJ, Khan N, Mehrotra R, Howard M, Veerman E, Packer NH, et al. Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology. 1999;9(3):293–302.

    Article  PubMed  CAS  Google Scholar 

  15. Rodahl M, Höök F, Kasemo B. QCM operation in liquids: an explanation of measured variations in frequency and Q factor with liquid conductivity. Anal Chem. 1996;68:2219–27.

    Article  PubMed  CAS  Google Scholar 

  16. Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung Z. Phys. 1959;155:206–22.

    Article  CAS  Google Scholar 

  17. Vionova MV, Rodahl M, Jonson M, Kasemo B. Viscoelastic accustic response of layered polymer films at fluid–solid interfaces. Continuum mechanism approach. Phys Scr. 1999;59:391–6.

    Article  Google Scholar 

  18. Andrés-Guerrero V, Molina-Martínez IT, Peral A, de las Heras B, Pintor J, Herrero-Vanrell R. The use of mucoadhesive polymers to enhance the hypotensive effect of a melatonin analog (5-MCA-NAT) in rabbit eyes. Invest Ophthalmol Vis Sci. 2011;52(3):1507–15.

    Article  PubMed  Google Scholar 

  19. De la Fuente M, Raviña M, Policelli P, Sanchez A, Seijo B, Alonso MJ. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev. 2010;62:100–17.

    Article  PubMed  Google Scholar 

  20. Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutylcyanoacrylate) core-shell nanoparticles. Biomat. 2007;28:233–43.

    Article  Google Scholar 

  21. Makky A, Michel JP, Kasselouri A, Briand E, Maillard Ph, Rosilio V. Evaluation of the specific interactions between glycodendrimeric porphyrins, free or incorporated into liposomes, and concanavaline a by fluorescence spectroscopy, surface pressure, and QCM-D measurements. Langmuir. 2010;26(15):12761–8.

    Article  PubMed  CAS  Google Scholar 

  22. Halthur TJ, Arnebrant T, Macakova L, Feiler A. Sequential adsorption of bovine mucin and lectoperoxidase to various substrates studies with quartz crystal microbalance with dissipation. Langmuir. 2010;26(7):4901–8.

    Article  PubMed  CAS  Google Scholar 

  23. Feldoto Z, Pettersson T, Dedinaite A. Mucin-electrolyte interactions at the solid–liquid interface probed by QCM-D. Langmuir. 2008;24:2248–3357.

    Article  Google Scholar 

  24. Komolov KE, Senin II, Philippov PP, Koch KW. Surface plasmon resonance study of G protein/receptor coupling in a lipid bilayer-free system. Anal Chem. 2006;78:1228–34.

    Article  PubMed  CAS  Google Scholar 

  25. Uchida H, Furtain K, Kawai Y, Kitazawa H, Horii A, Shiba K, et al. A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin. Biosci Biotechnol Biochem. 2004;68(5):1004–10.

    Article  PubMed  CAS  Google Scholar 

  26. Russel BG, Moddeman WE, Birkbeck JC, Wright SE, Millington DS, Stevens RD, et al. Surface structure of human mucin using X-ray protpelectron spectroscopy. Biospectroscopy. 1998;4:257–66.

    Article  Google Scholar 

  27. Kesimer M, Sheehan JK. Analyzing the functions of large glycoconjugates through the dissipative properties of their absorbed layers using the gel-forming mucin MUC5B as an example. Glycobiology. 2008;18(6):463–72.

    Article  PubMed  CAS  Google Scholar 

  28. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71:505–18.

    Article  PubMed  CAS  Google Scholar 

  29. Ponchel G, Touchard F, Duchene D, Peppas NA. Bioadhesive analysis of controlled-release systems I. Fracture and interpenetration analysis of poly(acryl acid)-containing systems. J Contr Release. 1987;5:129–41.

    Article  CAS  Google Scholar 

  30. Mortazavi SA, Smart J. An investigation into the role of water movement and mucus gel hydration in mucoadhesion. J Contr Release. 1993;25:197–203.

    Article  CAS  Google Scholar 

  31. Pimenta C, Lenaerts V, Cadieux C, Raymond P, Juhasz J, Simard MA, et al. Mucoadhesion of hydroxypropylmethacrylate nanoparticles to ral tintestinal ileal segments in vitro. Pharm Res. 1990;7:49–53.

    Article  Google Scholar 

  32. Rao KVR, Buri P. A novel in situ method to test polymers ad coated microparticles bioadhesion. Int J Pharm. 1990;52:265–70.

    Article  Google Scholar 

  33. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57(11):1595–639.

    Article  PubMed  CAS  Google Scholar 

  34. Lee S, Müller M, Rezwan K, Spencer ND. Porcine gastric mucin (PGM) at the water/poly(dimethylsiloxane) (PDMS) interface: influence of pH and ionic strength on its conformation, adsorption, and aqueous lubrication properties. Langmuir. 2005;21(18):8344–53.

    Article  PubMed  CAS  Google Scholar 

  35. Liu Q, Wang Y. Development of an ex vivo method for evaluation of precorneal residence of topical ophthalmic formulations. AAPS Pharmaceut Sci Tech. 2009;10(3):796–805.

    Article  CAS  Google Scholar 

  36. Saettone MF, Monti D, Torracca MT, Chetoni P. Mucoadhesive ophthalmic vehicle: evaluation of polymeric low-viscosity formulations. J Pharm. 1994;10(1):83–92.

    CAS  Google Scholar 

  37. Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, Yang H. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine Nanotechnol Biol Med. 2011 In press

  38. Boas U, Heegaard MH. Dendrimers in drug research. Chem Soc Rev. 2004;33:43–63.

    Article  PubMed  CAS  Google Scholar 

  39. Griffiths PC, Occhipinti P, Morris C, Heenan RK, King SM, Gumbleton M. PSGE-NMR and SANS studies of the interaction of model polymer therapeutics with mucins. Biomacromolecules. 2010;11:120–5.

    Article  PubMed  CAS  Google Scholar 

  40. Liu Y, Bryantsev VS, Diallo MS, Goddard III WA. PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc. 2009;131:2798–9.

    Article  PubMed  CAS  Google Scholar 

  41. Andersson K, Hamalainen M, Maemqvist M. Identification and optimization of regeneration conditions for affinity-based biosensors assays. A multivariate cocktail approach. Anal Chem. 1999;71:2475–81.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

Dr. Bravo-Osuna would like to thank the Institute de Chimie du Centre National de Recherche Scientifique du France (CNRS) for financial support. She is also very thankful to Mrs. S. Mazzaferro (CNRS UMR 8612, Université Paris Sud) for the preparation of low molecular weight chitosan, to Dr. V. Andrés and Dr. M. Vicario (University Complutense of Madrid) for their useful comments, and to Dr. J.A. García (Surface Physics and Engineering Department–CSIC) for kindly help in XPS discussion. Dr. Bravo-Osuna, Dr. Herrero-Vanrell and Dr. Molina-Martínez would like to thank to Research Group UCM 920415 (GR35/10-A) and MAT2010-18242 for financial support. Dr. Argüeso would like to thank NIH/NEI Grant No. R01EY014847 (PA) for financial support. Authors would like to thank the IOTDYS (Université Paris VII) for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bravo-Osuna.

APPENDIX

APPENDIX

Chip Regeneration

Some authors have already observed the strong interaction established between mucins and polymers during SPR experiments, which makes difficult, even impossible to separate both ligand and analyte without the risk of altering mucin structure (10,11). Several detergents as well as acidic and basic solutions have been proposed to regenerate ligand surfaces in SPR studies (41), however, all recommended solutions were useless in the regeneration of a ligand layer in the present experimental work (data non shown). In order to reuse chips, it was necessary to develop a total regeneration method, which removed not only analyte but also ligand from the gold surface. The method selected, known as “basic piranha”, was able to eliminate all bound protein. This method, in combination with surface exposure to a UV-ozone chamber, was used to recondition the Au surface. XPS studies were performed on regenerated Au surfaces. According to Fig. 2b, c, the intensity of Au4f reached levels similar to the non-treated gold surfaces. Additionally in the core levels, neither N1s peak nor second maximum at 288 eV were recorded in the regenerated Au chip scan, indicative of the absence of proteins. Further, the cleaning procedure does not alter the chemical state since there is not energy displacement of peak positions.

Additionally, the baselines of “recycled” chips were monitored on Biacore® showing statistically similar (p > 0.05) values before and after regeneration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo-Osuna, I., Noiray, M., Briand, E. et al. Interfacial Interaction between Transmembrane Ocular Mucins and Adhesive Polymers and Dendrimers Analyzed by Surface Plasmon Resonance. Pharm Res 29, 2329–2340 (2012). https://doi.org/10.1007/s11095-012-0761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0761-1

KEY WORDS

Navigation