Skip to main content
Log in

High Concentration Formulation Studies of an IgG2 Antibody Using Small Angle X-ray Scattering

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Concentrated protein formulations are strongly influenced by protein-protein interactions. These can be probed at low protein concentration by e.g. virial coefficients. It was recently suggested that interactions are attractive at short distances and repulsive at longer distances. Measurements at low concentrations mainly sample longer distances, hence may not predict high concentration behavior. Here we demonstrate that small angle X-ray scattering (SAXS) measurements simultaneously collect information on interactions at short and long distances.

Methods

IgG2 antibody samples at concentrations up to 122 mg/ml are analyzed using SAXS and compared to Circular Dichroism (CD), Fluorescence, Size Exclusion Chromatography (SEC) and Dynamic Light Scattering (DLS) analysis.

Results

DLS and SEC analyses reveal attraction between antibodies at high concentrations. SAXS data analysis provides an elaborate understanding and shows both attractive and repulsive forces. The protein-protein interactions are strongly affected by excipients. No change in the solution state of IgG2 is observed at pH 4–8, while samples at pH 3 exhibit heavy oligomerization. The solution conformation of the examined IgG2 derived from SAXS data is a T-shape.

Conclusion

SAXS analysis resolves simultaneous attractive and repulsive interactions, and details the effect of excipients on the interactions, while providing three-dimensional structural information from low-concentration samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

+NaCl:

154 mM sodium chloride

+Sucrose:

270 mM sucrose

A2 :

second virial coefficient

BSA:

bovine serum albumine

Buffer only:

no further excipients

CD:

circular dichroism

DLS:

dynamic light scattering

Dmax :

maximal dimension

FF:

form factor

KD :

diffusion virial coefficient

MM:

molecular mass MM

P(r):

pair distance distribution function

Rg :

radius of gyration

Rh :

hydrodynamic radius

SAXS:

small angle x-ray scattering

SEC:

size exclusion chromatography

SF:

the structure factor

SFeff :

effective structure factor

SLS:

static light scattering

REFERENCES

  1. Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26.

    Article  PubMed  CAS  Google Scholar 

  2. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–402.

    Article  PubMed  CAS  Google Scholar 

  3. Chari R, Jerath K, Badkar AV, Kalonia DS. Long- and shortrange electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm Res. 2009;26(12):2607–18.

    Article  PubMed  CAS  Google Scholar 

  4. Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci. 2010;99:1152–68.

    Article  PubMed  CAS  Google Scholar 

  5. Saluja A, Badkar AV, Zeng DL, Nema S, Kalonia DS. Application of high-frequency rheology measurements for analyzing protein-protein interactions in high protein concentration solutions using a model monoclonal antibody (igg2). J Pharm Sci. 2006;95(9):1967–83.

    Article  PubMed  CAS  Google Scholar 

  6. Svergun DI, Koch MHJ. Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys. 2003;66:1735–82.

    Article  CAS  Google Scholar 

  7. Hansen S. Simultaneous estimation of the form factor and structure factor for globular particles in small-angle scattering. J Appl Cryst. 2008;41:436–45.

    Article  CAS  Google Scholar 

  8. Petoukhov MV, Konarev PV, Kikhney AG, Svergun DI. ATSAS 2.1 - towards automated and web-supported small-angle scattering data analysis. J Appl Cryst. 2007;40:223–8.

    Article  Google Scholar 

  9. Toft KN, Vestergaard B, Nielsen SS, Snakenborg D, Jeppesen MG, Jacobsen JK, Arleth L, Kutter JP. High-throughput small angle x-ray scattering from proteins in solution using a microfluidic front-end. Anal Chem. 2008;80:3648–54.

    Article  PubMed  CAS  Google Scholar 

  10. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: a windows PC-based system for small-angle scattering data analysis. J Appl Cryst. 2003;36:1277–82.

    Article  CAS  Google Scholar 

  11. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI. ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst. 2006;39:277–86.

    Article  CAS  Google Scholar 

  12. Svergun DI, Semenyuk AV, Feigin LA. Small-angle-scattering-data treatment by the regularization method. Acta Crystallogr A Found Crystallogr. 1988;A44:244–50.

    Article  Google Scholar 

  13. Svergun DI. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Cryst. 1992;25:495–503.

    Article  Google Scholar 

  14. Svergun DI, Barberato C, Koch MHJ. Crysol-a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst. 1995;28:768–73.

    Article  CAS  Google Scholar 

  15. Franke D, Svergun DI. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Cryst. 2009;42:342–6.

    Article  CAS  Google Scholar 

  16. Volkov VV, Svergun DI. Uniqueness of ab initio shape determination in small angle scattering. J Appl Cryst. 2003;36:860–4.

    Article  CAS  Google Scholar 

  17. Teraoka I. Polymer solutions: An introduction to physical properties, John Wilet & sons, Inc., 2002.

  18. Cao A. Light Scattering. Recent Applications. Anal Lett. 2003;36:3185–225.

    Article  CAS  Google Scholar 

  19. Yadav S, Shire SJ, Kalonia DS. Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci. 2012;101:998–1011.

    Article  PubMed  CAS  Google Scholar 

  20. DeLano WL. The PyMOL molecular graphics system. Palo Alto: DeLano Scientific LLC; 2008.

    Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was financially supported by Novo Nordisk A/S, the Drug Research Academy, The Danish Council for Independent Research | Medical Sciences and DANSCATT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Vestergaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosbæk, C.R., Konarev, P.V., Svergun, D.I. et al. High Concentration Formulation Studies of an IgG2 Antibody Using Small Angle X-ray Scattering. Pharm Res 29, 2225–2235 (2012). https://doi.org/10.1007/s11095-012-0751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0751-3

KEY WORDS

Navigation