Skip to main content

Advertisement

Log in

Assessment of the Protein–Protein Interactions in a Highly Concentrated Antibody Solution by Using Raman Spectroscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the protein–protein interactions of a highly concentrated antibody solution that could cause oligomerization or aggregation and to develop a better understanding of the optimization of drug formulations.

Methods

In this study, we used Raman spectroscopy to investigate the structure and interactions of a highly concentrated antibody solution over a wide range of concentrations (10–200 mg/mL) with the aid of a multivariate analysis.

Results

Our analysis of the amide I band, I 856 /I 830 of Tyr, and the relative intensity at 1004 cm−1 of the Phe and OH stretching region at around 3000 cm−1 showed that across this wide range of concentrations, the secondary structure of the IgG molecules did not change; however, short-range attractive interactions around the Tyr and Phe residues occurred as the distance between the IgG molecules decreased with increasing concentration. Analysis of the OH stretching region at around 3000 cm−1 showed that these short-range attractive interactions correlated with the amount of hydrated water around the IgG molecules.

Conclusions

Our data show that Raman spectroscopy can provide valuable information of the protein–protein interactions based on conformational approaches to support conventional colloidal approaches, especially for analyses of highly concentrated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

MCR-ALS:

Multivariate curve resolution-alternating least squares

PCA:

Principal components analysis

REV:

Reduced-eigenvalue

RMSECV:

Root-mean-square prediction error of cross-validation

REFERENCES

  1. Uchiyama S. Liquid formulation for antibody drugs. Biochim Biophys Acta. 1844;2014:2041–52.

    Google Scholar 

  2. Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci. 2010;99(3):1152–68.

    Article  CAS  PubMed  Google Scholar 

  3. Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature. 2004;432:492–5.

    Article  CAS  PubMed  Google Scholar 

  4. Wen Z. Raman spectroscopy of protein pharmaceuticals. J Pharm Sci. 2007;96(10):2861–71.

    Article  CAS  PubMed  Google Scholar 

  5. Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK. UV resonance raman investigations of peptide and protein structure and dynamics. Chem Rev. 2012;112(5):2604–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ota C, Noguchi S, Tsumoto K. The molecular interaction of a protein in highly concentrated solution investigated by Raman spectroscopy. Biopolymers. 2015;103(4):237–46.

    Article  CAS  PubMed  Google Scholar 

  7. Malinowski ER. Factor analysis in chemistry. 2nd ed. New York: Wiley-Interscience; 1991.

    Google Scholar 

  8. Lobo AP, Valles BS, Tascón NF, Madrera RR. Calibration models for routine analysis of cider by mid-infrared spectroscopy. LWT Food Sci Technol. 2006;39(9):1026–32.

    Article  Google Scholar 

  9. Tauler R. Application of non-linear optimization methods to the estimation of multivariate curve resolution solutions and of their feasible band boundaries in the investigation of two chemical and environmental simulated data sets. Anal Chim Acta. 2007;595(1–2):289–98.

    Article  CAS  PubMed  Google Scholar 

  10. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE. Raman spectroscopic characterization of secondary structure in natively unfolded proteins : α-Synuclein. J Am Chem Soc. 2004;126(8):2399–408.

    Article  CAS  PubMed  Google Scholar 

  11. Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE. Secondary structure of a-synuclein oligomers: characterization by raman and atomic force microscopy. J Mol Biol. 2006;355(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  12. Vinaykin M, Benderskii AV. Vibrational sum-frequency spectrum of the water bend at the air/water interface. J Phys Chem Lett. 2012;3(22):3348–52.

    Article  CAS  Google Scholar 

  13. Chen H, Lin H, Chen H, Mai F, Liu Y, Lin C, et al. Innovative strategy with potential to increase hemodialysis efficiency and safety. Sci Rep. 2014;4(4425):1–5.

    Google Scholar 

  14. Shen YR, Ostroverkhov V. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem Rev. 2006;106:1140–54.

    Article  CAS  PubMed  Google Scholar 

  15. Davis JG, Gierszal KP, Wang P, Ben-Amotz D. Water structural transformation at molecular hydrophobic interfaces. Nature. 2012;491:582–5.

    Article  CAS  PubMed  Google Scholar 

  16. Englert L, Biela A, Zayed M, Heine A, Hangauer D, Klebe G. Displacement of disordered water molecules from hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the S1′-pocket of thermolysin. Biochim Biophys Acta. 1800;2010:1192–202.

    Google Scholar 

  17. Phillip WS, Matthew RL, Demetri TM, George MW. Is it the shape of the cavity, or the shape of the water in the cavity? Eur Phys J Special Topics. 2014;223:853–91.

    Article  Google Scholar 

  18. Lord RC, Yu N. Laser excited Raman spectroscopy of biomolecules: I. Native lysozyme and its constituent amino acids. J Mol Biol. 1970;50(2):509–24.

    Article  CAS  PubMed  Google Scholar 

  19. Xu M, Ermolenkov VV, He W, Uversky VN, Fredriksen L, Lednev IK. Lysozyme fibrillation: deep UV Raman spectroscopic characterization of protein structural transformation. Biopolymers. 2005;79:58–61.

    Article  CAS  PubMed  Google Scholar 

  20. Xu M, Shashilov VA, Ermolenkov VV, Fredriksen L, Zagorevski D, Lednev IK. Hen egg white lysozyme fibrillation: a deep UV resonance Raman spectroscopic study. J Biophotonics. 2008;1(3):215–29.

    Article  CAS  PubMed  Google Scholar 

  21. Gelden JD, Gussem KD, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc. 2007;38:1133–47.

    Article  Google Scholar 

  22. Sarbon NM, Badii F, Howell NK. Preparation and characterization of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocoll. 2013;30(1):143–51.

    Article  Google Scholar 

  23. McCammon JA, Wolynes PG, Karplus M. Picosecond dynamics of tyrosine side chains in proteins. Biochemistry. 1979;18:927–42.

    Article  CAS  PubMed  Google Scholar 

  24. Brandl M, Weiss MS, Jabs A, Suhnel J, Hilgenfeld R. C-H π-interactions in proteins. J Mol Biol. 2001;307:357–77.

    Article  CAS  PubMed  Google Scholar 

  25. Siamwiza MN, Lord RC, Chen MC, Takamatsu T, Harada I, Matsuura H, et al. Interpretation of the doublet at 850 and 830 cm−1 in the Raman spectra of Tyrosyl residues in proteins and certain model compounds. Biochemistry. 1975;14(22):4870–6.

    Article  CAS  PubMed  Google Scholar 

  26. Chari R, Jerath K, Badkar AV, Kalonia DS. Long and short range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm Res. 2009;26:2607–18.

    Article  CAS  PubMed  Google Scholar 

  27. Takeuchi H, Harada I. Normal coordinate analysis of the indole ring. Spectrochim Acta. 1986;142A:1069–78.

    Article  Google Scholar 

  28. Miura T, Takeuchi H, Harada I. Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen deuterium exchange kinetics. Biochemistry. 1988;27:88–94.

    Article  CAS  PubMed  Google Scholar 

  29. Scherer TM, Liu J, Shire SJ, Minton AP. Intermolecular interactions of IgG1 monoclonal antibodies at high concentrations characterized by light scattering. J Phys Chem B. 2010;114:12948–57.

    Article  CAS  PubMed  Google Scholar 

  30. Saito S, Hasegawa J, Kobayashi N, Tomitsuka T, Uchiyama S, Fukui K. Effects of ionic strength and sugars on the aggregation propensity of monoclonal antibodies: influence of colloidal and conformational stabilities. Pharm Res. 2013;30:1263–80.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas MS. Role of cosolute–protein interactions in the dissociation of monoclonal antibody clusters. J Phys Chem B. 2015;119:13027–38.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank our colleague Dr. Daisuke Irikura (Horiba, Ltd.) for helpful comments on the results and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikashi Ota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The results of PCA (REV, RMSECV) are supplied as Supporting Information 1,3,5 (Fig. S1,3,5). Concentration dependence of Raman spectra in CH and OH stretching region (Fig. S2), the abstract spectra of MCR-ALS analysis (Fig. S4) and distance between the molecules of the IgG solution as a function of concentration (Fig. S6) are also supplied as Supporting Information 2,4,6. (DOCX 940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ota, C., Noguchi, S., Nagatoishi, S. et al. Assessment of the Protein–Protein Interactions in a Highly Concentrated Antibody Solution by Using Raman Spectroscopy. Pharm Res 33, 956–969 (2016). https://doi.org/10.1007/s11095-015-1842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1842-8

KEY WORDS

Navigation