Skip to main content
Log in

Comparative Investigations on In Vitro Serum Stability of Polymeric Micelle Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Stability of polymeric micelles upon injection is essential for a drug delivery system but is not fully understood. We optimized an analytical test allowing quantification of micellar stability in biofluids and applied it to a variety of block copolymer micelles with different hydrophobic block architechtures.

Methods

Polymeric micelles were prepared from four different polymers and investigated via encapsulation of two fluorescent dyes. Samples were incubated in human serum; changes in Foerster Resonance Energy Transfer (FRET) were recorded as a function of time. This fluorescence-based approach was supported semi-quantitatively by results from Asymmetrical Flow Field-Flow-Fractionation (AF4).

Results

After incubation experiments, micellar stability was determined by calculation of two stability-indicating parameters: residual micellar fractions (RMFs) and in vitro serum half-lives. Both parameters showed that PEG-PVPy micelles rapidly destabilized after 3 h (RMF < 45%), whereas PEG-PLA, PEG-PLGA and PEG-PCL micelles were far more stable (RMFs 65 to 98%).

Conclusion

This FRET-based assay is a valuable tool in evaluating and screening serum stability of polymeric micelles and revealed low serum stability of PEG-PVPy micelles compared to polyester-based micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Lipinski C. Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev. 2002;5:82–5.

    Google Scholar 

  2. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92:1343–55.

    Article  PubMed  CAS  Google Scholar 

  3. Jones M, Leroux J. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.

    Article  PubMed  CAS  Google Scholar 

  4. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  PubMed  CAS  Google Scholar 

  5. Aliabadi HM, Shahin M, Brocks DR, Lavasanifar A. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet. 2008;47:619–34.

    Article  PubMed  CAS  Google Scholar 

  6. Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010;624:25–37.

    Article  PubMed  CAS  Google Scholar 

  7. Wiradharma N, Zhang Y, Venkataraman S, Hedrick JL, Yang YY. Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today. 2009;4:302–17.

    Article  CAS  Google Scholar 

  8. Wang J, Sui M, Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr Drug Metab. 2010;11:129–41.

    Article  PubMed  CAS  Google Scholar 

  9. Hamaguchi T. Cancer chemotherapy utilizing nanotechnology. Gan To Kagaku Ryoho. 2009;36:372–6.

    PubMed  CAS  Google Scholar 

  10. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan KS, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72:191–202.

    Article  PubMed  CAS  Google Scholar 

  11. Chung TW, Liu DZ, Hsieh JH, Fan XC, Yang JD, Chen JH. Characterizing poly(epsilon-caprolactone)-b-chitooligosaccharide-b-poly(ethylene glycol) (PCP) copolymer micelles for doxorubicin (DOX) delivery: effects of crosslinked of amine groups. J Nanosci Nanotechnol. 2006;6:2902–11.

    Article  PubMed  CAS  Google Scholar 

  12. Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin Drug Deliv. 2010;7:49–62.

    Article  PubMed  CAS  Google Scholar 

  13. Gaucher G, Marchessault RH, Leroux JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release. 2010;143:2–12.

    Article  PubMed  CAS  Google Scholar 

  14. Chen H, Kim S, He W, Wang H, Low PS, Park K, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir. 2008;24:5213–7.

    Article  PubMed  CAS  Google Scholar 

  15. Chen H, Kim S, Li L, Wang S, Park K, Cheng JX. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc Natl Acad Sci USA. 2008;105:6596–601.

    Article  PubMed  CAS  Google Scholar 

  16. Kamat PV, Fox MA. Photophysics and photochemistry of xanthene dyes in polymer-solutions and films. J Phys Chem. 1984;88:2297–302.

    Article  CAS  Google Scholar 

  17. Cerritelli S, Velluto D, Hubbell JA, Fontana A. Breakdown kinetics of aggregates from poly(ethylene glycol-bl-propylene sulfide) di- and triblock copolymers induced by a non-ionic surfactant. J Polym Sci A Polym Chem. 2008;46:2477–87.

    Article  CAS  Google Scholar 

  18. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerf. 2000;18:301–13.

    Article  CAS  Google Scholar 

  19. Aliabadi HM, Brocks DR, Mahdipoor P, Lavasanifar A. A novel use of an in vitro method to predict the in vivo stability of block copolymer based nano-containers. J Control Release. 2007;122:63–70.

    Article  PubMed  CAS  Google Scholar 

  20. Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300:615–8.

    Article  PubMed  CAS  Google Scholar 

  21. Wilhelm M, Zhao CL, Wang YC, Xu RL, Winnik MA, Mura JL, et al. Poly(styrene-ethylene oxide) block copolymer micelle formation in water—a fluorescence probe study. Macromolecules. 1991;24:1033–40.

    Article  CAS  Google Scholar 

  22. Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99:2039–44.

    Article  CAS  Google Scholar 

  23. Berney C, Danuser G. FRET or no FRET: a quantitative comparison. Biophys J. 2003;84:3992–4010.

    Article  PubMed  CAS  Google Scholar 

  24. Fraunhofer W, Winter G. The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm. 2004;58:369–83.

    Article  PubMed  CAS  Google Scholar 

  25. Zimm BH. The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys. 1948;16:1093–9.

    Article  CAS  Google Scholar 

  26. Zheng Z, Obbard JP. Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system. Water Res. 2002;36:2667–72.

    Article  PubMed  CAS  Google Scholar 

  27. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B-Biointerf. 1999;16:3–27.

    Article  CAS  Google Scholar 

  28. Wang L, Zeng R, Li C, Qiao R. Self-assembled polypeptide-block-poly(vinylpyrrolidone) as prospective drug-delivery systems. Colloids Surf B Biointerf. 2009;74:284–92.

    Article  CAS  Google Scholar 

  29. Sagalowicz L, Leser ME, Watzke HJ, Michel M. Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci Technol. 2006;17:204–14.

    Article  CAS  Google Scholar 

  30. European Medicines Agency. Reflection paper on the pharmaceutical development of intravenous medicinal products containing active substances solubilised in micellar systems (non-polymeric surfactants). EMA/CHMP/QWP/574767/2010 (2010).

  31. Ahyayauch H, Bennouna M, Alonso A, Goni FM. Detergent effects on membranes at subsolubilizing concentrations: transmembrane lipid motion, bilayer permeabilization, and vesicle lysis/reassembly are independent phenomena. Langmuir. 2010;26:7307–13.

    Article  PubMed  CAS  Google Scholar 

  32. Lasseter KC, Gambale J, Jin B, Bergman A, Constanzer M, Dru J, et al. Tolerability of fosaprepitant and bioequivalency to aprepitant in healthy subjects. J Clin Pharmacol. 2007;47:834–40.

    Article  PubMed  CAS  Google Scholar 

  33. Riley T, Govender T, Stolnik S, Xiong CD, Garnett MC, Illum L, et al. Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids Surf B-Biointerf. 1999;16:147–59.

    Article  CAS  Google Scholar 

  34. Jacquin M, Muller P, Cottet H, Theodoly O. Self-assembly of charged amphiphilic diblock copolymers with insoluble blocks of decreasing hydrophobicity: from kinetically frozen colloids to macrosurfactants. Langmuir. 2010;26:18681–93.

    Article  PubMed  CAS  Google Scholar 

  35. Theodoly O, Jacquin M, Muller P, Chhun S. Adsorption kinetics of amphiphilic diblock copolymers: from kinetically frozen colloids to macrosurfactants. Langmuir. 2009;25:781–93.

    Article  PubMed  CAS  Google Scholar 

  36. Toncheva V, Schacht E, Ng SY, Barr J, Heller J. Use of block copolymers of poly(ortho esters) and poly (ethylene glycol) micellar carriers as potential tumour targeting systems. J Drug Target. 2003;11:345–53.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors thank Dr. Judith Kuntsche at the Martin Luther University Halle, Germany, for her help with the AF4 experiments. The support of Dr. Philip Hewitt and Alina Rwei, Merck KGaA Darmstadt, Germany, concerning language improvements is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Goepferich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, T., Rachel, R., Besheer, A. et al. Comparative Investigations on In Vitro Serum Stability of Polymeric Micelle Formulations. Pharm Res 29, 448–459 (2012). https://doi.org/10.1007/s11095-011-0555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0555-x

KEY WORDS

Navigation