Skip to main content

Advertisement

Log in

Functional and Clinical Evidence of the Influence of Sorafenib Binding to Albumin on Sorafenib Disposition in Adult Cancer Patients

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Sorafenib, an oral multitargeted tyrosine kinase inhibitor, is highly bound to plasma proteins (>99.5%). Little is known about the influence of variations in sorafenib protein binding on its disposition. The aims of this study were to characterize in vitro sorafenib binding properties to albumin using the quenching fluorescence method and investigate the influence of albuminemia and bilirubinemia on sorafenib disposition in 54 adult cancer patients.

Results

In vitro estimate of sorafenib dissociation constant (Kd) for albumin was 0.22 μM [CI95 0.20–0.23]. In physiological conditions, sorafenib unbound fraction would increase 1.7-fold as albuminemia decreased from 45 g/L (680 μM) to 30 g/L (453 μM). In presence of bilirubin, apparent Kd of sorafenib was ~1.5-fold greater for bilirubin/albumin molar ratio of 1:4. In clinical settings, median sorafenib clearance (CL) was 1.42 L/h (0.75–2.13 L/h). In univariate analysis, sex, body mass index, and albuminemia were associated with CL (p = 0.04, 0.048, and 0.008, respectively). In multivariate analysis, albuminemia (p = 0.0036) was the single parameter independently associated with CL.

Conclusion

These findings highlight the major influence of albuminemia on sorafenib clearance and its disposition in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAG:

α1-acid glycoprotein

ALP:

alkaline phosphatase

ALT:

aspartate alaninetransferase

AST:

aspartate aminotransferase

Bmax :

common binding capacity

BMI:

body mass index

Cb :

bound drug concentration

CL:

total clearance

CRP:

protein C-reactive

Ct :

total concentration of drug

CU :

unbound concentration of drug

CV:

coefficient of variation

DMSO:

dimethyl sulfoxide

fu:

unbound fraction

GGT:

Gamma-glutamyl transpeptidase

HSA:

human serum albumin

ICD:

induced circular dichroism

Kd:

dissociation constant

Kdapp :

apparent dissociation constant 

Ki:

inhibitor constant

Lt :

concentration of interacting ligand

MYR:

myristic acid

PDGFR:

platelet-derived growth factor receptor

Pu :

unbound protein concentration

VEGFR:

vascular endothelial growth factor receptor

λexc:

maximum excitation wavelength

λmax:

maximum emission wavelength

References

  1. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.

    Article  PubMed  CAS  Google Scholar 

  2. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27(20):3312–8.

    Article  PubMed  CAS  Google Scholar 

  3. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  PubMed  CAS  Google Scholar 

  4. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–40.

    Article  PubMed  CAS  Google Scholar 

  5. Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27(10):1675–84.

    Article  PubMed  CAS  Google Scholar 

  6. Pecuchet N, Avril M, Kerob D, Billemont B, Blanchet B, Herait P, et al. Relationship between dose, exposure, and antitumoral activity of sorafenib in melanoma. J Clin Oncol. 2010;28(15):suppl (May 20), Abstract 8582.

  7. Blanchet B, Billemont B, Barete S, Garrigue H, Cabanes L, Coriat R, et al. Toxicity of sorafenib: clinical and molecular aspects. Expert Opin Drug Saf. 2010;9(2):275–87.

    Article  PubMed  CAS  Google Scholar 

  8. Strumberg D, Clark JW, Awada A, Moore MJ, Richly H, Hendlisz A, et al. Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist. 2007;12(4):426–37.

    Article  PubMed  CAS  Google Scholar 

  9. van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35(8):692–706.

    Article  PubMed  Google Scholar 

  10. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 2005;23(5):965–72.

    Article  PubMed  CAS  Google Scholar 

  11. European Medicines Agency. Sorafenib (Nexavar): summary of product characteristics [online]. Available from URL: http://www.ema.europa.eu/humandocs/PDFs/EPAR/nexavar/H-690-en6.pdf.

  12. Tesseromatisand C, Alevizou A. The role of the protein-binding on the mode of drug action as well the interactions with other drugs. Eur J Drug Metab Pharmacokinet. 2008;33(4):225–30.

    Article  Google Scholar 

  13. Zsila F, Fitos I, Bencze G, Keri G, Orfi L. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors. Curr Med Chem. 2009;16(16):1964–77.

    Article  PubMed  CAS  Google Scholar 

  14. Weisiger RA, Ostrow JD, Koehler RK, Webster CC, Mukerjee P, Pascolo L, et al. Affinity of human serum albumin for bilirubin varies with albumin concentration and buffer composition: results of a novel ultrafiltration method. J Biol Chem. 2001;276(32):29953–60.

    Article  PubMed  CAS  Google Scholar 

  15. Wang ZX. An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett. 1995;360(2):111–4.

    Article  PubMed  CAS  Google Scholar 

  16. Vial Y, Tod M, Hornecker M, Urien S, Conti F, Dauphin A, et al. In vitro influence of fatty acids and bilirubin on binding of mycophenolic acid to human serum albumin. J Pharm Biomed Anal. 2011;54(3):607–9.

    Article  PubMed  CAS  Google Scholar 

  17. Blanchet B, Billemont B, Cramard J, Benichou AS, Chhun S, Harcouet L, et al. Validation of an HPLC-UV method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal. 2009;49(4):1109–14.

    Article  PubMed  CAS  Google Scholar 

  18. Boudou-Rouquette P, Blanchet B, Mir O, Billemont B, Ropert S, Barete S, et al. Proposal of a new population pharmacokinetics (PK) model of sorafenib and rationale for a three-daily schedule. J Clin Oncol. 2010;28:7s (abstr 3044).

    Article  Google Scholar 

  19. D’Argenioand DZ, Schumitzky A. ADAPT II user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 1997.

    Google Scholar 

  20. Parikh HH, McElwain K, Balasubramanian V, Leung W, Wong D, Morris ME, et al. A rapid spectrofluorimetric technique for determining drug-serum protein binding suitable for high-throughput screening. Pharm Res. 2000;17(5):632–7.

    Article  PubMed  CAS  Google Scholar 

  21. Miller AA, Murry DJ, Owzar K, Hollis DR, Kennedy EB, Abou-Alfa G, et al. Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J Clin Oncol. 2009;27(11):1800–5.

    Article  PubMed  CAS  Google Scholar 

  22. Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8.

    Article  PubMed  CAS  Google Scholar 

  23. Alexandre J, Rey E, Girre V, Grabar S, Tran A, Montheil V, et al. Relationship between cytochrome 3A activity, inflammatory status and the risk of docetaxel-induced febrile neutropenia: a prospective study. Ann Oncol. 2007;18(1):168–72.

    Article  PubMed  CAS  Google Scholar 

  24. Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P. Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol. 2006;57(5):685–92.

    Article  PubMed  CAS  Google Scholar 

  25. Benichou AS, Blanchet B, Conti F, Hornecker M, Bernard D, Taieb F, et al. Variability in free mycophenolic acid exposure in adult liver transplant recipients during the early posttransplantation period. J Clin Pharmacol. 2010;50(10):1202–10.

    Article  PubMed  Google Scholar 

  26. de Winter BC, van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. 2009;36(6):541–64.

    Article  PubMed  CAS  Google Scholar 

  27. Gomo C, Coriat R, Faivre L, Mir O, Ropert S, Billemont B, et al. Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs. 2010; 2Aug 13 [Epub ahead of print].

Download references

Acknowledgments & Disclosures

We acknowledge the help of J. Lecas (Centre de Langues de la Maison des Langues, Université Paris Descartes) in proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Blanchet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tod, M., Mir, O., Bancelin, N. et al. Functional and Clinical Evidence of the Influence of Sorafenib Binding to Albumin on Sorafenib Disposition in Adult Cancer Patients. Pharm Res 28, 3199–3207 (2011). https://doi.org/10.1007/s11095-011-0499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0499-1

Key Words

Navigation