Skip to main content

Advertisement

Log in

Finding Promiscuous Old Drugs for New Uses

  • Perspectives
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

From research published in the last six years we have identified 34 studies that have screened libraries of FDA-approved drugs against various whole cell or target assays. These studies have each identified one or more compounds with a suggested new bioactivity that had not been described previously. We now show that 13 of these drugs were active against more than one additional disease, thereby suggesting a degree of promiscuity. We also show that following compilation of all the studies, 109 molecules were identified by screening in vitro. These molecules appear to be statistically more hydrophobic with a higher molecular weight and AlogP than orphan-designated products with at least one marketing approval for a common disease indication or one marketing approval for a rare disease from the FDA’s rare disease research database. Capturing these in vitro data on old drugs for new uses will be important for potential reuse and analysis by others to repurpose or reposition these or other existing drugs. We have created databases which can be searched by the public and envisage that these can be updated as more studies are published.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Chong CR, Sullivan Jr DJ. New uses for old drugs. Nature. 2007;448:645–6.

    Article  PubMed  CAS  Google Scholar 

  2. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

    Article  PubMed  CAS  Google Scholar 

  3. Byrne ST, Gu P, Zhou J, Denkin SM, Chong C, Sullivan D, et al. Pyrrolidine dithiocarbamate and diethyldithiocarbamate are active against growing and nongrowing persister Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2007;51:4495–7.

    Article  PubMed  CAS  Google Scholar 

  4. Gloeckner C, Garner AL, Mersha F, Oksov Y, Tricoche N, Eubanks LM, et al. Repositioning of an existing drug for the neglected tropical disease Onchocerciasis. Proc Natl Acad Sci USA. 2010;107:3424–9.

    Article  PubMed  CAS  Google Scholar 

  5. Shim JS, Matsui Y, Bhat S, Nacev BA, Xu J, Bhang HE, et al. Effect of nitroxoline on angiogenesis and growth of human bladder cancer. J Natl Cancer Inst. 2010;102(24):1855–73

    Google Scholar 

  6. Lougheed KE, Taylor DL, Osborne SA, Bryans JS, Buxton RS. New anti-tuberculosis agents amongst known drugs. Tuberculosis (Edinburgh, Scotland). 2009;89:364–70.

    Article  CAS  Google Scholar 

  7. Cho W, Brenner M, Peters N, Messing A. Drug screening to identify suppressors of GFAP expression. Hum Mol Genet. 2010;19:3169–78.

    Article  PubMed  CAS  Google Scholar 

  8. Stavrovskaya IG, Narayanan MV, Zhang W, Krasnikov BF, Heemskerk J, Young SS, et al. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J Exp Med. 2004;200:211–22.

    Article  PubMed  CAS  Google Scholar 

  9. Weisman JL, Liou AP, Shelat AA, Cohen FE, Guy RK, DeRisi JL. Searching for new antimalarial therapeutics amongst known drugs. Chem Biol Drug Des. 2006;67:409–16.

    Article  PubMed  CAS  Google Scholar 

  10. Gheeya JS, Chen QR, Benjamin CD, Cheuk AT, Tsang P, Chung JY, et al. Screening a panel of drugs with diverse mechanisms of action yields potential therapeutic agents against neuroblastoma. Cancer Biol Ther. 2009;8:2386–95.

    Article  PubMed  CAS  Google Scholar 

  11. Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, et al. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol. 2010;79:1272–80.

    Article  PubMed  CAS  Google Scholar 

  12. Antczak C, Kloepping C, Radu C, Genski T, Muller-Kuhrt L, Siems K, et al. Revisiting old drugs as novel agents for retinoblastoma: in vitro and in vivo antitumor activity of cardenolides. Invest Ophthalmol Vis Sci. 2009;50:3065–73.

    Article  PubMed  Google Scholar 

  13. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci USA. 2008;105:19579–86.

    Article  PubMed  CAS  Google Scholar 

  14. Gerber AN, Masuno K, Diamond MI. Discovery of selective glucocorticoid receptor modulators by multiplexed reporter screening. Proc Natl Acad Sci USA. 2009;106:4929–34.

    Article  PubMed  CAS  Google Scholar 

  15. Garrett SC, Hodgson L, Rybin A, Toutchkine A, Hahn KM, Lawrence DS, et al. A biosensor of S100A4 metastasis factor activation: inhibitor screening and cellular activation dynamics. Biochemistry. 2008;47:986–96.

    Article  PubMed  CAS  Google Scholar 

  16. Downey AS, Chong CR, Graczyk TK, Sullivan DJ. Efficacy of pyrvinium pamoate against Cryptosporidium parvum infection in vitro and in a neonatal mouse model. Antimicrob Agents Chemother. 2008;52:3106–12.

    Article  PubMed  CAS  Google Scholar 

  17. Mackey ZB, Baca AM, Mallari JP, Apsel B, Shelat A, Hansell EJ, et al. Discovery of trypanocidal compounds by whole cell HTS of Trypanosoma brucei. Chem Biol Drug Des. 2006;67:355–63.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA. 2007;104:19023–8.

    Article  PubMed  CAS  Google Scholar 

  19. Rosen J, Gottfries J, Muresan S, Backlund A, Oprea TI. Novel chemical space exploration via natural products. J Med Chem. 2009;52:1953–62.

    Article  PubMed  CAS  Google Scholar 

  20. Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, et al. Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem. 2004;47:224–32.

    Article  PubMed  CAS  Google Scholar 

  21. Azzaoui K, Hamon J, Faller B, Whitebread S, Jacoby E, Bender A, et al. Modeling promiscuity based on in vitro safety pharmacology profiling data. ChemMedChem. 2007;2:874–80.

    Article  PubMed  CAS  Google Scholar 

  22. Hu Y, Bajorath J. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs. J Chem Inf Model. 2010;50:2112–8.

    Article  PubMed  CAS  Google Scholar 

  23. Chong CR, Chen X, Shi L, Liu JO, Sullivan Jr DJ. A clinical drug library screen identifies astemizole as an antimalarial agent. Nat Chem Biol. 2006;2:415–6.

    Article  PubMed  CAS  Google Scholar 

  24. Oprea TI. Current trends in lead discovery: are we looking for the appropriate properties? J Comput Aided Mol Des. 2002;16:325–34.

    Article  PubMed  CAS  Google Scholar 

  25. Oprea TI, Davis AM, Teague SJ, Leeson PD. Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci. 2001;41:1308–15.

    PubMed  CAS  Google Scholar 

  26. Hohman M, Gregory K, Chibale K, Smith PJ, Ekins S, Bunin B. Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery. Drug Discov Today. 2009;14:261–70.

    Article  PubMed  CAS  Google Scholar 

  27. Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, et al. A collaborative database and computational models for tuberculosis drug discovery. Mol BioSyst. 2010;6:840–51.

    Article  PubMed  CAS  Google Scholar 

  28. Ekins S, Kaneko T, Lipinksi CA, Bradford J, Dole K, Spektor A, et al. Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol BioSyst. 2010;6:2316–24.

    Article  PubMed  CAS  Google Scholar 

  29. Ekins S, Hohman M, Bunin BA. Pioneering use of the cloud for development of the collaborative drug discovery (cdd) database. In: Ekins S, Hupcey MAZ, Williams AJ, editors. Collaborative computational technologies for biomedical research, vol. Hoboken: Wiley; 2010. in press.

    Google Scholar 

  30. Ekins S, Williams AJ. Meta-analysis of molecular property patterns and filtering of public datasets of antimalarial “hits” and drugs. MedChemComm. 2010;1:325–30.

    Article  CAS  Google Scholar 

  31. Ekins S, Williams AJ. When pharmaceutical companies publish large datasets: an abundance of riches or fool’s gold? Drug Discov Today. 2010;15:812–5.

    Article  PubMed  Google Scholar 

  32. Kortagere S, Krasowski MD, Ekins S. The importance of discerning shape in molecular pharmacology. Trends Pharmacol Sci. 2009;30:138–47.

    Article  PubMed  CAS  Google Scholar 

  33. Zheng X, Ekins S, Rauffman J-P, Polli JE. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol Pharm. 2009;6:1591–603.

    Article  PubMed  CAS  Google Scholar 

  34. Diao L, Ekins S, Polli JE. Novel inhibitors of human organic cation/carnitine transporter (hOCTN2) via computational modeling and in vitro testing. Pharm Res. 2009;26:1890–900.

    Article  PubMed  CAS  Google Scholar 

  35. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, et al. Predicting new molecular targets for known drugs. Nature. 2009;462:175–81.

    Article  PubMed  CAS  Google Scholar 

  36. Ekins S, Williams AJ, Krasowski MD, Freundlich JS. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today 2011;16(7–8):298–310.

    Google Scholar 

  37. DuBois SG, Krailo MD, Lessnick SL, Smith R, Chen Z, Marina N, et al. Phase II study of intermediate-dose cytarabine in patients with relapsed or refractory Ewing sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;52:324–7.

    Article  PubMed  Google Scholar 

  38. O’Connor KA, Roth BL. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov. 2005;4:1005–14.

    Article  PubMed  Google Scholar 

  39. Feng BY, Simeonov A, Jadhav A, Babaoglu K, Inglese J, Shoichet BK, et al. A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem. 2007;50:2385–90.

    Article  PubMed  CAS  Google Scholar 

  40. Huang R, Southall N, Wang Y, Yasgar A, Shinn P, Jadhav A, et al. The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med. 2011;3(80):80ps16.

    PubMed  CAS  Google Scholar 

  41. Williams AJ. Reviewing data quality in the NCGC pharmaceutical collection browser. http://www.chemconnector.com/2011/04/28/reviewing-data-quality-in-the-ncgc-pharmaceutical-collection-browser/.

Download references

ACKNOWLEDGMENTS and DISCLOSURES

SE gratefully acknowledges David Sullivan (Johns Hopkins University) for discussing and suggesting references for JHCCL. Accelrys are kindly thanked for providing Discovery Studio.

SE consults for Collaborative Drug Discovery, Inc. on a Bill and Melinda Gates Foundation: Grant#49852 “Collaborative drug discovery for TB through a novel database of SAR data optimized to promote data archiving and sharing.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Ekins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table I

Drugs identified with new uses using HTS methods. This table greatly extends a previously published version (1). CCR5, Chemokine receptor 5; DHFR, Dihydrofolate reductase; DOA, Drugs of abuse, FDA, Food and Drug Administration; GLT1, Glutamate transporter 1; HSP-90, Heat shock protein 90; JHCCL, John Hopkins Clinical Compound Library; Mtb, Mycobacterium tuberculosis; NK-1, neurokinin- 1 receptor; OCTN2 (DOC 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekins, S., Williams, A.J. Finding Promiscuous Old Drugs for New Uses. Pharm Res 28, 1785–1791 (2011). https://doi.org/10.1007/s11095-011-0486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0486-6

KEY WORDS

Navigation