Skip to main content

Advertisement

Log in

Novel Inhibitors of Human Organic Cation/Carnitine Transporter (hOCTN2) via Computational Modeling and In Vitro Testing

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective was to elucidate the inhibition requirements of the human organic cation/carnitine transporter (hOCTN2).

Methods

Twenty-seven drugs were screened initially for their potential to inhibit uptake of l-carnitine into a stably transfected hOCTN2-MDCK cell monolayer. A HipHop common features pharmacophore was developed and used to search a drug database. Fifty-three drugs, including some not predicted to be inhibitors, were selected and screened in vitro.

Results

A common features pharmacophore was derived from initial screening data and consisted of three hydrophobic features and a positive ionizable feature. Among the 33 tested drugs that were predicted to map to the pharmacophore, 27 inhibited hOCTN2 in vitro (40% or less l-carnitine uptake from 2.5 μM l-carnitine solution in presence of 500 μM drug, compared to l-carnitine uptake without drug present). Hence, the pharmacophore accurately prioritized compounds for testing. K i measurements showed low micromolar inhibitors belonged to diverse therapeutic classes of drugs, including many not previously known to inhibit hOCTN2. Compounds were more likely to cause rhabdomyolysis if the C max/K i ratio was higher than 0.0025.

Conclusion

A combined pharmacophore and in vitro approach found new, structurally diverse inhibitors for hOCTN2 that may possibly cause clinical significant toxicity such as rhabdomyolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

MDCK:

Madin–Darby canine kidney

OCTN2:

organic cation/carnitine transporter

QSAR:

quantitative structure activity relationship

References

  1. Dresser MJ, Leabman MK, Giacomini KM. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J Pharm Sci. 2001;90(4):397–421. doi:10.1002/1520-6017(200104)90:4<397::AID-JPS1000>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  2. Rebouche CJ, Paulson DJ. Carnitine metabolism and function in humans. Annu Rev Nutr. 1986;6:41–66. doi:10.1146/annurev.nu.06.070186.000353.

    Article  PubMed  CAS  Google Scholar 

  3. Matsuishi T, Yoshino M, Kato H, Ohura T, Tsujimoto G, Hayakawa J, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999;21(1):91–4. doi:10.1038/5030.

    Article  PubMed  Google Scholar 

  4. Wang Y, Ye J, Ganapathy V, Longo N. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci U S A. 1999;96(5):2356–60. doi:10.1073/pnas.96.5.2356.

    Article  PubMed  CAS  Google Scholar 

  5. Christopher-Stine L. Statin myopathy: an update. Curr Opin Rheumatol. 2006;18(6):647–53.

    PubMed  CAS  Google Scholar 

  6. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, et al. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999;291:778–84.

    PubMed  CAS  Google Scholar 

  7. Grube M, Meyer zu Schwabedissen HE, Präger D, Haney J, Möritz KU, Meissner K, et al. Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). Circulation 2006;113(8):1114–22.

    Article  PubMed  Google Scholar 

  8. Wagner CA, Lukewille U, Kaltenbach S, Moschen I, Broer A, Risler T, et al. Functional and pharmacological characterization of human Na(+)-carnitine cotransporter hOCTN2. Am J Physiol Renal Physiol. 2000;279:F584–591.

    PubMed  CAS  Google Scholar 

  9. Clement OO, Mehl AT. HipHop: pharmacophore based on multiple common-feature alignments. In: Guner OF, editor. Pharmacophore perception, development, and use in drug design. San Diego: IUL; 2000. p. 69–84.

    Google Scholar 

  10. Ekins S, Chang C, Mani S, Krasowski MD, Reschly EJ, Iyer M, et al. Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites. Mol Pharmacol. 2007;72:592–603. doi:10.1124/mol.107.038398.

    Article  PubMed  CAS  Google Scholar 

  11. Ganapathy ME, Huang W, Rajan DP, Carter AL, Sugawara M, Iseki K, et al. Beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem. 2000;275:1699–707.

    Article  PubMed  CAS  Google Scholar 

  12. Chang C, Ekins S, Bahadduri P, Swaan PW. Pharmacophore-based discovery of ligands for drug transporters. Adv Drug Deliv Rev. 2006a;58:1431–50.

    Article  PubMed  CAS  Google Scholar 

  13. Chang C, Bahadduri PM, Polli JE, Swaan PW, Ekins S. Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab Dispos. 2006b;34(12):1976–84.

    Article  PubMed  CAS  Google Scholar 

  14. Ekins S, Johnston JS, Bahadduri P, D’Souzza VM, Ray A, Chang C, Swaan PW. In vitro and pharmacophore based discovery of novel hPEPT1 inhibitors. Pharm Res. 2005;22:512–7.

    Article  PubMed  CAS  Google Scholar 

  15. Akarawut W, Lin CJ, Smith DE. Noncompetitive inhibition of glycylsarcosine transport by quinapril in rabbit renal brush border membrane vesicles: effect on high-affinity peptide transporter. J Pharmacol Exp Ther. 1998;287(2):684–90.

    PubMed  CAS  Google Scholar 

  16. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24(7):1227–51.

    Article  PubMed  CAS  Google Scholar 

  17. Kuntzer T, Reichmann H, Bogousslavsky J, Regli F. Emetine-induced myopathy and carnitine deficiency. J Neurol. 1990;237:495–6.

    Article  PubMed  CAS  Google Scholar 

  18. Tune BM. Effects of l-carnitine on the renal tubular transport of cephaloridine. Biochem Pharmacol. 1995;50(4):562–4.

    Article  PubMed  CAS  Google Scholar 

  19. Tune BM, Hsu CY. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships. J Pharmacol Exp Ther. 1994;270(3):873–80.

    PubMed  CAS  Google Scholar 

  20. Luck RP, Verbin S. Rhabdomyolysis: a review of clinical presentation, etiology, diagnosis, and management. Pediatr Emerg Care 2008;24(4):262–8.

    Article  PubMed  Google Scholar 

  21. Morris AA, Turnbull DM. Fatty acid oxidation defects in muscle. Curr Opin Neurol. 1998;11(5):485–90.

    Article  PubMed  CAS  Google Scholar 

  22. Fowler S, Zhang H. In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for predicting drug–drug interactions. AAPS J. 2008;10(2):410–24.

    Article  PubMed  CAS  Google Scholar 

  23. Todesco L, Bur D, Brooks H, Török M, Landmann L, Stieger B, et al. Pharmacological manipulation of l-carnitine transport into L6 cells with stable overexpression of human OCTN2. Cell Mol Life Sci. 2008;65(10):1596–608.

    Article  PubMed  CAS  Google Scholar 

  24. Seth P, Wu X, Huang W, Leibach FH, Ganapathy V. Mutations in novel organic cation transporter (OCTN2), an organic cation/carnitine transporter, with differential effects on the organic cation transport function and the carnitine transport function. J Biol Chem. 1999;274(47):33388–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health grant DK67530. The authors kindly acknowledge Dr. Xin Ming and Dr. Dhiren R. Thakker (University of North Carolina-Chapel Hill) for providing the hOCTN2-MDCK cell line used in this study. The authors gratefully acknowledge Dr. Matthew D. Krasowski for his assistance in creating the SCUT 2008 database supplemented with metabolites and drugs of abuse. The authors also thank Accelrys, San Diego, CA for making Discovery Studio Catalyst available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Polli.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 522 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, L., Ekins, S. & Polli, J.E. Novel Inhibitors of Human Organic Cation/Carnitine Transporter (hOCTN2) via Computational Modeling and In Vitro Testing. Pharm Res 26, 1890–1900 (2009). https://doi.org/10.1007/s11095-009-9905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9905-3

KEY WORDS

Navigation