Skip to main content

Advertisement

Log in

Potential of Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine in Facilitating Enhanced Delivery of Active Drug to Interior Sites of Tumors: A Two-Tier Monolayer In Vitro Study

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the advantages of amino acid/dipeptide monoester prodrugs for cancer treatments by assessing the uptake and cytotoxic effects of floxuridine prodrugs in a secondary cancer cell monolayer following permeation across a primary cancer cell monolayer.

Methods

The first Capan-2 monolayer was grown on membrane transwell inserts; the second monolayer was grown at the bottom of a plate. The permeation of floxuridine and its prodrugs across the first monolayer and the uptake and cell proliferation assay on secondary layer were sequentially determined.

Results

All floxuridine prodrugs exhibited greater permeation across the first Capan-2 monolayer than the parent drug. The correlation between uptake and growth inhibition in the second monolayer with intact prodrug permeating the first monolayer suggests that permeability and enzymatic stability are essential for sustained action of prodrugs in deeper layers of tumors. The correlation of uptake and growth inhibition were vastly superior for dipeptide prodrugs to those obtained with mono amino acid prodrugs.

Conclusions

Although a tentative general overall correlation between intact prodrug and uptake or cytotoxic action was obtained, it appears that a mixture of floxuridine prodrugs with varying beneficial characteristics may be more effective in treating tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Bookman MA. Biologic therapies for gynecologic cancer. Curr Opin Oncol. 1995;7:478–84.

    Article  PubMed  CAS  Google Scholar 

  2. Gray J, Frith C, Parker J. In vivo enhancement of chemotherapy with static electric or magnetic fields. Bioelectromagnetics. 2000;21:575–83.

    Article  PubMed  CAS  Google Scholar 

  3. Kamstock D, Guth A, Elmslie R, Kurzman I, Liggitt D, Coro L, et al. Liposome-DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma. Cancer Gene Ther. 2006;13:306–17.

    Article  PubMed  CAS  Google Scholar 

  4. Keler T, Khan S, Sorof S. Liver fatty acid binding protein and mitogenesis in transfected hepatoma cells. Adv Exp Med Biol. 1997;400A:517–24.

    PubMed  CAS  Google Scholar 

  5. Kratz F, Mansour A, Soltau J, Warnecke A, Fichtner I, Unger C, et al. Development of albumin-binding doxorubicin prodrugs that are cleaved by prostate-specific antigen. Arch Pharm (Weinheim). 2005;338:462–72.

    Article  CAS  Google Scholar 

  6. Kullberg M, Mann K, Owens JL. Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors. Med Hypotheses. 2005;64:468–70.

    Article  PubMed  CAS  Google Scholar 

  7. Mittal S, Song X, Vig BS, Landowski CP, Kim I, Hilfinger JM, et al. Prolidase, a potential enzyme target for melanoma: design of proline-containing dipeptide-like prodrugs. Mol Pharm. 2005;2:37–46.

    Article  PubMed  CAS  Google Scholar 

  8. Wagner E, Kircheis R, Walker GF. Targeted nucleic acid delivery into tumors: new avenues for cancer therapy. Biomed Pharmacother. 2004;58:152–61.

    Article  PubMed  CAS  Google Scholar 

  9. Shimma N, Umeda I, Arasaki M, Murasaki C, Masubuchi K, Kohchi Y, et al. The design and synthesis of a new tumor-selective fluoropyrimidine carbamate, capecitabine. Bioorg Med Chem. 2000;8:1697–706.

    Article  PubMed  CAS  Google Scholar 

  10. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumors by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34:1274–81.

    Article  PubMed  CAS  Google Scholar 

  11. Pinedo HM, Peters GF. Fluorouracil: biochemistry and pharmacology. J Clin Oncol. 1988;6:1653–64.

    PubMed  CAS  Google Scholar 

  12. Grem JL, Harold N, Shapiro J, Bi DQ, Quinn MG, Zentko S, et al. Phase I and pharmacokinetic trial of weekly oral fluorouracil given with eniluracil and low-dose leucovorin to patients with solid tumors. J Clin Oncol. 2000;18:3952–63.

    PubMed  CAS  Google Scholar 

  13. Laskin JD, Evans RM, Slocum HK, Burke D, Hakala MT. Basis for natural variation in sensitivity to 5-fluorouracil in mouse and human cells in culture. Cancer Res. 1979;39:383–90.

    PubMed  CAS  Google Scholar 

  14. Tsume Y, Hilfinger JM, Amidon GL. Enhanced cancer cell growth inhibition by dipeptide prodrugs of floxuridine: increased transporter affinity and metabolic stability. Mol Pharm. 2008;5:717–27.

    Article  PubMed  CAS  Google Scholar 

  15. Burris 3rd HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.

    PubMed  CAS  Google Scholar 

  16. Barton-Burke M. Gemcitabine: a pharmacologic and clinical overview. Cancer Nurs. 1999;22:176–83.

    Article  PubMed  CAS  Google Scholar 

  17. Heinemann V, Hertel LW, Grindey GB, Plunkett W. Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1988;48:4024–31.

    PubMed  CAS  Google Scholar 

  18. Plunkett W, Huang P, Gandhi V. Preclinical characteristics of gemcitabine. Anticancer Drugs. 1995;6 Suppl 6:7–13.

    Article  PubMed  CAS  Google Scholar 

  19. Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995;22:3–10.

    PubMed  CAS  Google Scholar 

  20. Tsume Y, Vig BS, Sun J, Landowski CP, Hilfinger JM, Ramachandran C, et al. Enhanced absorption and growth inhibition with amino acid monoester prodrugs of floxuridine by targeting hPEPT1 transporters. Molecules. 2008;13:1441–54.

    Article  PubMed  CAS  Google Scholar 

  21. Landowski CP, Vig BS, Song X, Amidon GL. Targeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol Cancer Ther. 2005;4:659–67.

    Article  PubMed  CAS  Google Scholar 

  22. Song X, Lorenzi PL, Landowski CP, Vig BS, Hilfinger JM, Amidon GL. Amino acid ester prodrugs of the anticancer agent gemcitabine: synthesis, bioconversion, metabolic bioevasion, and hPEPT1-mediated transport. Mol Pharm. 2005;2:157–67.

    Article  PubMed  CAS  Google Scholar 

  23. Behrens I, Kamm W, Dantzig AH, Kissel T. Variation of peptide transporter (PepT1 and HPT1) expression in Caco-2 cells as a function of cell origin. J Pharm Sci. 2004;93:1743–54.

    Article  PubMed  CAS  Google Scholar 

  24. Geromichalos GD, Trafalis DT, Katsoulos GA, Papageorgiou A, Dalezis P, Triandafillidis EB, et al. Synergistic interaction between a mixed ligand copper (II) chelate complex and two anticancer agents in T47D human breast cancer cells in vitro. J BUON. 2006;11:469–76.

    PubMed  CAS  Google Scholar 

  25. Ohbayashi M, Yasuda M, Kawakami I, Kohyama N, Kobayashi Y, Yamamoto T. Effect of interleukins response to ECM-induced acquisition of drug resistance in MCF-7 cells. Exp Oncol. 2008;30:276–82.

    PubMed  CAS  Google Scholar 

  26. Padron JM, van der Wilt CL, Smid K, Smitskamp-Wilms E, Backus HH, Pizao PE, et al. The multilayered postconfluent cell culture as a model for drug screening. Crit Rev Oncol Hematol. 2000;36:141–57.

    Article  PubMed  CAS  Google Scholar 

  27. Rubas W, Jezyk N, Grass GM. Mechanism of dextran transport across rabbit intestinal tissue and a human colon cell-line (CACO-2). J Drug Target. 1995;3:15–21.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood-brain barrier. Drug Metab Dispos. 2009;37:1251–8.

    Article  PubMed  CAS  Google Scholar 

  29. Au JL, Jang SH, Zheng J, Chen CT, Song S, Hu L, et al. Determinants of drug delivery and transport to solid tumors. J Control Release. 2001;74:31–46.

    Article  PubMed  CAS  Google Scholar 

  30. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.

    Article  PubMed  CAS  Google Scholar 

  31. Rizvi I, Celli JP, Evans CL, Abu-Yousif AO, Muzikansky A, Pogue BW, et al. Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Res. 2010;70:9319–28.

    Article  PubMed  CAS  Google Scholar 

  32. Ohmori T, Yang JL, Price JO, Arteaga CL. Blockade of tumor cell transforming growth factor-betas enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp Cell Res. 1998;245:350–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10:241–53.

    Article  PubMed  CAS  Google Scholar 

  34. del Carmen MG, Rizvi I, Chang Y, Moor AC, Oliva E, Sherwood M, et al. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J Natl Cancer Inst. 2005;97:1516–24.

    Article  PubMed  Google Scholar 

  35. Molpus KL, Kato D, Hamblin MR, Lilge L, Bamberg M, Hasan T. Intraperitoneal photodynamic therapy of human epithelial ovarian carcinomatosis in a xenograft murine model. Cancer Res. 1996;56:1075–82.

    PubMed  CAS  Google Scholar 

  36. Finlay JC, Mitra S, Patterson MS, Foster TH. Photobleaching kinetics of Photofrin in vivo and in multicell tumour spheroids indicate two simultaneous bleaching mechanisms. Phys Med Biol. 2004;49:4837–60.

    Article  PubMed  CAS  Google Scholar 

  37. Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol. 2007;83:849–71.

    Article  PubMed  CAS  Google Scholar 

  38. Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10.

    Article  PubMed  CAS  Google Scholar 

  39. Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, et al. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 2008;5:849–62.

    Article  PubMed  CAS  Google Scholar 

  40. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen. 2004;9:273–85.

    Article  PubMed  CAS  Google Scholar 

  41. Kim JB. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 2005;15:365–77.

    Article  PubMed  Google Scholar 

  42. Celli JP, Rizvi I, Evans CL, Abu-Yousif AO, Hasan T. Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model. J Biomed Opt. 2010;15:051603.

    Article  PubMed  Google Scholar 

  43. Debnath J, Brugge JS. Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer. 2005;5:675–88.

    Article  PubMed  CAS  Google Scholar 

  44. Monazzam A, Josephsson R, Blomqvist C, Carlsson J, Langstrom B, Bergstrom M. Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer. Breast Cancer Res. 2007;9:R45.

    Article  PubMed  Google Scholar 

  45. Landowski CP, Song X, Lorenzi PL, Hilfinger JM, Amidon GL. Floxuridine amino acid ester prodrugs: enhancing Caco-2 permeability and resistance to glycosidic bond metabolism. Pharm Res. 2005;22:1510–8.

    Article  PubMed  CAS  Google Scholar 

  46. Vig BS, Lorenzi PJ, Mittal S, Landowski CP, Shin HC, Mosberg HI, et al. Amino acid ester prodrugs of floxuridine: synthesis and effects of structure, stereochemistry, and site of esterification on the rate of hydrolysis. Pharm Res. 2003;20:1381–8.

    Article  PubMed  CAS  Google Scholar 

  47. Beauchamp LM, Krenitsky TA. Acyclovir prodrugs: the road to valacyclovir. Drugs Future. 1993;18:619–28.

    Google Scholar 

  48. Beauchamp LM, Orr GF, De Miranda P, Burnette TC, Krenitsky TA. Amino acid ester prodrugs of acyclovir. Antiviral Chem Chemother. 1992;3:157–64.

    CAS  Google Scholar 

  49. Maag H. Ganciclovir pro-drugs: Synthesis and pre-clinical development of valganciclovir (Valcyte™)., AAPS Annual Meeting, Toronto, Canada., 2002.

  50. Purifoy DJ, Beauchamp LM, de Miranda P, Ertl P, Lacey S, Roberts G, et al. Review of research leading to new anti-herpesvirus agents in clinical development: valaciclovir hydrochloride (256U, the L-valyl ester of acyclovir) and 882C, a specific agent for varicella zoster virus. J Med Virol. 1993;Suppl 1:139–45.

    Article  PubMed  CAS  Google Scholar 

  51. Jung D, Dorr A. Single-dose pharmacokinetics of valganciclovir in HIV- and CMV-seropositive subjects. J Clin Pharmacol. 1999;39:800–4.

    Article  PubMed  CAS  Google Scholar 

  52. Pescovitz MD, Rabkin J, Merion RM, Paya CV, Pirsch J, Freeman RB, et al. Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients. Antimicrob Agents Chemother. 2000;44:2811–5.

    Article  PubMed  CAS  Google Scholar 

  53. Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun. 1998;246:470–5.

    Article  PubMed  CAS  Google Scholar 

  54. Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, et al. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res. 1998;15:1154–9.

    Article  PubMed  CAS  Google Scholar 

  55. Han HK, Oh DM, Amidon GL. Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPEPT1 cells overexpressing a human peptide transporter. Pharm Res. 1998;15:1382–6.

    Article  PubMed  CAS  Google Scholar 

  56. Sugawara M, Huang W, Fei YJ, Leibach FH, Ganapathy V, Ganapathy ME. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J Pharm Sci. 2000;89:781–9.

    Article  PubMed  CAS  Google Scholar 

  57. Anand BS, Patel J, Mitra AK. Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2. J Pharmacol Exp Ther. 2003;304:781–91.

    Article  PubMed  CAS  Google Scholar 

  58. Eriksson AH, Elm PL, Begtrup M, Nielsen R, Steffansen B, Brodin B. hPEPT1 affinity and translocation of selected Gln-Sar and Glu-Sar dipeptide derivatives. Mol Pharm. 2005;2:242–9.

    Article  PubMed  CAS  Google Scholar 

  59. Friedrichsen GM, Chen W, Begtrup M, Lee CP, Smith PL, Borchardt RT. Synthesis of analogs of L-valacyclovir and determination of their substrate activity for the oligopeptide transporter in Caco-2 cells. Eur J Pharm Sci. 2002;16:1–13.

    Article  PubMed  CAS  Google Scholar 

  60. Meredith D, Temple CS, Guha N, Sword CJ, Boyd CA, Collier ID, et al. Modified amino acids and peptides as substrates for the intestinal peptide transporter PepT1. Eur J Biochem. 2000;267:3723–8.

    Article  PubMed  CAS  Google Scholar 

  61. Nielsen CU, Andersen R, Brodin B, Frokjaer S, Taub ME, Steffansen B. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line. J Control Release. 2001;76:129–38.

    Article  PubMed  CAS  Google Scholar 

  62. Vabeno J, Lejon T, Nielsen CU, Steffansen B, Chen W, Ouyang H, et al. Phe-Gly dipeptidomimetics designed for the di-/tripeptide transporters PEPT1 and PEPT2: synthesis and biological investigations. J Med Chem. 2004;47:1060–9.

    Article  PubMed  CAS  Google Scholar 

  63. Lorenzi PL, Landowski CP, Song X, Borysko KZ, Breitenbach JM, Kim JS, et al. Amino acid ester prodrugs of 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole enhance metabolic stability in vitro and in vivo. J Pharmacol Exp Ther. 2005;314:883–90.

    Article  PubMed  CAS  Google Scholar 

  64. Song X, Vig BS, Lorenzi PL, Drach JC, Townsend LB, Amidon GL. Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter. J Med Chem. 2005;48:1274–7.

    Article  PubMed  CAS  Google Scholar 

  65. Goolcharran C, Borchardt RT. Kinetics of diketopiperazine formation using model peptides. J Pharm Sci. 1998;87:283–8.

    Article  PubMed  CAS  Google Scholar 

  66. Larsen SW, Ankersen M, Larsen C. Kinetics of degradation and oil solubility of ester prodrugs of a model dipeptide (Gly-Phe). Eur J Pharm Sci. 2004;22:399–408.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Wei Shen for his expertise with prodrug purification. This work was supported by grants NIGMD-2R01GM037188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsume, Y., Hilfinger, J.M. & Amidon, G.L. Potential of Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine in Facilitating Enhanced Delivery of Active Drug to Interior Sites of Tumors: A Two-Tier Monolayer In Vitro Study. Pharm Res 28, 2575–2588 (2011). https://doi.org/10.1007/s11095-011-0485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0485-7

KEY WORDS

Navigation