Skip to main content

Advertisement

Log in

Agarose Surface Coating Influences Intracellular Accumulation and Enhances Payload Stability of a Nano-delivery System

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Protein therapeutics often require repeated administrations of drug over a long period of time. Protein instability is a major obstacle to the development of systems for their controlled and sustained release. We describe a surface modification of nanoporous silicon particles (NSP) with an agarose hydrogel matrix that enhances their ability to load and release proteins, influencing intracellular delivery and preserving molecular stability.

Methods

We developed and characterized an agarose surface modification of NSP. Stability of the released protein after enzymatic treatment of loaded particles was evaluated with SDS-page and HPLC analysis. FITC-conjugated BSA was chosen as probe protein and intracellular delivery evaluated by fluorescence microscopy.

Results

We showed that agarose coating does not affect NSP protein release rate, while fewer digestion products were found in the released solution after all the enzymatic treatments. Confocal images show that the hydrogel coating improves intracellular delivery, specifically within the nucleus, without affecting the internalization process.

Conclusions

This modification of porous silicon adds to its tunability, biocompatibility, and biodegradability the ability to preserve protein integrity during delivery without affecting release rates and internalization dynamics. Moreover, it may allow the silicon particles to function as protein carriers that enable control of cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A1:

agarose composition 0.125%

A2:

agarose composition 0.05%

Ag:

agarose coated

APTES:

aminopropyltriethoxysilane

BSA:

bovine serum albumin

FACS:

fluorescence activated cell sorting

FGF:

fibroblast growth factor

HPLC:

high performance liquid chromatography

HUVEC:

human umbilical vein endothelial cells

NC:

bare / not coated

NSPs:

nanoporous silicon particles

PLGA:

poly(lactic-co-glycolic acid)

pSi:

porous silicon

SDS-page:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEM:

scanning electron microscope

SiN:

silicon nitride

VEGF:

vascular endothelial growth factor

REFERENCES

  1. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  PubMed  CAS  Google Scholar 

  2. Murphyand WJ, Longo DL. Growth hormone as an immunomodulating therapeutic agent. Immunol Today. 2000;21:211–3.

    Article  Google Scholar 

  3. Chen DJ, Osterrieder N, Metzger SM, Buckles E, Doody AM, DeLisa MP, et al. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc Natl Acad Sci. 107:3099–3104.

  4. Rosado JL, Solomons NW, Lisker R, Bourges H. Enzyme replacement therapy for primary adult lactase deficiency. Effective reduction of lactose malabsorption and milk intolerance by direct addition of [beta]-galactosidase to milk at mealtime. Gastroenterology. 1984;87:1072–82.

    PubMed  CAS  Google Scholar 

  5. Haase M. Human recombinant factor IX: safety and efficacy studies in hemophilia B patients previously treated with plasma-derived factor IX concentrates. Blood. 2002;100:4242.

    Article  PubMed  CAS  Google Scholar 

  6. Mease PJ. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet. 2000;356:385–90.

    Article  PubMed  CAS  Google Scholar 

  7. Gorman JD, Sack KE, Davis JC. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor [alpha]. N Engl J Med. 2002;346:1349–56.

    Article  PubMed  CAS  Google Scholar 

  8. Szmuness W. Hepatitis B vaccine: demonstration of efficacy in a controlled clinical trial in a high-risk population in the United States. N Engl J Med. 1980;303:833–41.

    Article  PubMed  CAS  Google Scholar 

  9. Shi L. Gardasil: prophylactic human papillomavirus vaccine development [mdash] from bench top to bed-side. Clin Pharm Ther. 2007;81:259–64.

    Article  CAS  Google Scholar 

  10. Sodee DB. Multicenter ProstaScint imaging findings in 2154 patients with prostate cancer. Urology. 2000;56:988–93.

    Article  PubMed  CAS  Google Scholar 

  11. Taillefer R, Edell S, Innes G, Lister-James J. Acute thromboscintigraphy with Tc-99 m-apcitide: results of the phase 3 multicenter clinical trial comparing Tc-99 m-apcitide scintigraphy with contrast venography for imaging acute DVT. J Nucl Med. 2000;41:1214–23.

    PubMed  CAS  Google Scholar 

  12. Meier CA. Diagnostic use of recombinant human thyrotropin in patients with thyroid carcinoma (phase I/II study). J Clin Endocrinol Metab. 1994;78:188–96.

    Article  PubMed  CAS  Google Scholar 

  13. VeÌgvaÌriand A, Marko-Varga G. Clinical Protein Science and Bioanalytical Mass Spectrometry with an Emphasis on Lung Cancer. Chem Rev. 2010;110:3278–98.

    Article  Google Scholar 

  14. McVey D, Hamilton MM, Hsu C, King CR, Brough DE, Wei LL. Repeat Administration of Proteins to the Eye With a Single Intraocular Injection of an Adenovirus Vector. Mol Ther. 2008;16:1444–9.

    Article  PubMed  CAS  Google Scholar 

  15. Mahmoodand I, Green MD. Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet. 2005;44:331–47.

    Article  Google Scholar 

  16. Putneyand SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat Biotech. 1998;16:153–7.

    Article  Google Scholar 

  17. Fu K, Klibanov AM, Langer R. Protein stability in controlled-release systems. Nat Biotech. 2000;18:24–5.

    Article  CAS  Google Scholar 

  18. Tayaliaand P, Mooney DJ. Controlled growth factor delivery for tissue engineering. Adv Mater. 2009;21:3269–85.

    Article  Google Scholar 

  19. Edelman ER, Nugent MA, Karnovsky MJ. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc Natl Acad Sci USA. 1993;90:1513–7.

    Article  PubMed  CAS  Google Scholar 

  20. Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, et al. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation. 1996;94:1074–82.

    PubMed  CAS  Google Scholar 

  21. Wang J, Chua KM, Wang C-H. Stabilization and encapsulation of human immunoglobulin G into biodegradable microspheres. J Colloid Interface Sci. 2004;271:92–101.

    Article  PubMed  CAS  Google Scholar 

  22. van de Weert M, Hennink WE, Jiskoot W. Protein Instability in Poly(Lactic-co-Glycolic Acid) microparticles. Pharm Res. 2000;17:1159–67.

    Article  PubMed  Google Scholar 

  23. Sah H. Protein instability toward organic solvent/water emulsification: implications for protein microencapsulation into microspheres. PDA J Pharm Sci Technol. 1999;53:3–10.

    PubMed  CAS  Google Scholar 

  24. Cleland JL, Mac A, Boyd B, Yang J, Duenas ET, Yeung D, et al. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res. 1997;14:420–5.

    Article  PubMed  CAS  Google Scholar 

  25. Canham LT. Bioactive silicon structure fabrication through nanoetching techniques. Advanced Materials. 1995; 7.

  26. Voelcker NH, Khung Y-L, Low SP, Clements LR, Williams KA. Porous Silicon Science and Technology Conference, Valencia, 2010.

  27. Herino R. In: Canham LT, editor. The properties of porous silicon. London: INSPEC-IEE; 1997.

    Google Scholar 

  28. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP. Mesoporous silicon in drug delivery applications. J Pharm Sci. 2008;97:632–53.

    Article  PubMed  CAS  Google Scholar 

  29. Chiappini C, Tasciotti E, Fakhoury JR, Fine D, Pullan L, Wang Y-C, et al. Tailored porous silicon microparticles: fabrication and properties. Chemphyschem. 2010;11:1029–35.

    PubMed  CAS  Google Scholar 

  30. Cunin F, Schmedake TA, Link JR, Li YY, Koh J, Bhatia SN, et al. Biomolecular screening with encoded porous-silicon photonic crystals. Nat Mater. 2002;1:39–41.

    Article  PubMed  CAS  Google Scholar 

  31. Linsmeier J, Wüst K, Schenk H, Hilpert U, Ossau W, Fricke J, et al. Chemical surface modification of porous silicon using tetraethoxysilane. Thin Solid Films. 1997;297:26–30.

    Article  CAS  Google Scholar 

  32. Gurtner C, Wun AW, Sailor MJ. Surface modification of porous silicon by electrochemical reduction of organo halides. Angew Chem Int Ed. 1999;38:1966–8.

    Article  CAS  Google Scholar 

  33. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, et al. Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J Control Release. 2005;108:362–74.

    Article  PubMed  CAS  Google Scholar 

  34. Prestidge CA, Barnes TJ, Lau CH, Barnett C, Loni A, Canham L. Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin Drug Deliv. 2007;4:101–10.

    Article  PubMed  CAS  Google Scholar 

  35. Tasciotti E, Liu XW, Bhavane R, Plant K, Leonard AD, Price BK, et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol. 2008;3:151–7.

    Article  PubMed  CAS  Google Scholar 

  36. Prestidge CA, Barnes TJ, Mierczynska-Vasilev A, Kempson I, Peddie F, Barnett C. Peptide and protein loading into porous silicon wafers. Phys Status Solidi A. 2008;205:311–5.

    Article  CAS  Google Scholar 

  37. Prestidge CA, Barnes TJ, Mierczynska-Vasilev A, Skinner W, Peddie F, Barnett C. Loading and release of a model protein from porous silicon powders. Phys Status Solidi A. 2007;204:3361–6.

    Article  CAS  Google Scholar 

  38. Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M. Multi-stage delivery nano-particle systems for therapeutic applications. Biochimica et Biophysica Acta (BBA)—General Subjects. In Press, Corrected Proof:in press (2010).

  39. Kilpeläinen M, Riikonen J, Vlasova MA, Huotari A, Lehto VP, Salonen J, et al. In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release. 2009;137:166–70.

    Article  PubMed  Google Scholar 

  40. Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ. Engineering the chemistry and nanostructure of porous silicon fabry-pérot films for loading and release of a steroid. Langmuir. 2004;20:11264–9.

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 2010;70:3687–96.

    Article  PubMed  CAS  Google Scholar 

  42. Tanaka T, Godin B, Bhavane R, Nieves-Alicea R, Gu J, Liu X, et al. In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm. 2010;402:190–7.

    Article  PubMed  CAS  Google Scholar 

  43. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release. 2010;141:320–7.

    Article  PubMed  CAS  Google Scholar 

  44. Ferrari M. Nanogeometry Beyond drug delivery Nat Nano. 2008;3:131–2.

    CAS  Google Scholar 

  45. Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, et al. Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res A. 2010;94A:1236–43.

    CAS  Google Scholar 

  46. Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, et al. Cellular association and assembly of a multistage delivery system. Small. 2010;6:1329–40.

    Article  PubMed  CAS  Google Scholar 

  47. Ferrati S, Mack A, Chiappini C, Liu X, Bean AJ, Ferrari M, et al. Intracellular trafficking of silicon particles and logic-embedded vectors. Nanoscale. 2010;2:1512–20.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Special thanks to our silicon fabrication team and the Microelectronics Research Center at the University of Texas at Austin. We thank M. Landry for the graphical support and I. Yazdi for the silicon particles modification and characterization. This study was supported by the following funds: DoD W911NF-09-1-0044 and State of Texas Governor’s Emerging Technology Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ennio Tasciotti.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 5663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Rosa, E., Chiappini, C., Fan, D. et al. Agarose Surface Coating Influences Intracellular Accumulation and Enhances Payload Stability of a Nano-delivery System. Pharm Res 28, 1520–1530 (2011). https://doi.org/10.1007/s11095-011-0453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0453-2

KEY WORDS

Navigation