Skip to main content
Log in

Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous silicon nanoparticles (pSiNPs) are a promising nanocarrier system for drug delivery owing to their biocompatibility, biodegradability, and non-inflammatory nature. Here, we investigate the fabrication and characterization of thermally hydrocarbonized pSiNPs (THCpSiNPs) and chitosan-coated THCpSiNPs for therapeutic oligonucleotide delivery. Chitosan coating after oligonucleotide loading significantly improves sustained oligonucleotide release and suppresses burst release effects. Moreover, cellular uptake, endocytosis, and cytotoxicity of oligonucleotide-loaded THCpSiNPs have been evaluated in vitro. Standard cell viability assays demonstrate that cells incubated with the NPs at a concentration of 0.1 mg/mL are 95% viable. In addition, chitosan coating significantly enhances the uptake of oligonucleotide-loaded THCpSiNPs across the cell membrane. Moreover, histopathological analysis of liver, kidney, spleen, and skin tissue collected from mice receiving NPs further demonstrates the biocompatible and non-inflammatory properties of the NPs as a gene delivery vehicle for intravenous and subcutaneous administration in vivo. Taken together, these results suggest that THCpSiNPs provide a versatile platform that could be used as efficient vehicles for the intracellular delivery of oligonucleotides for gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patil, S.D.; Rhodes, D.G.; Burgess, D.J. DNA-based therapeutics and DNA delivery systems: A comprehensive review. AAPS J. 2005, 7, e61–E77.

  2. Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008, 8, 193–204.

    Article  Google Scholar 

  3. Blechinger, J.; Bauer, A.T.; Torrano, A.A.; Gorzelanny, C.; Bräuchle, C.; Schneider, S.W. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. Small 2013, 9, 3970–3980.

    Article  Google Scholar 

  4. Pendergrast, P.S.; Marsh, H.N.; Grate, D.; Healy, J.M.; Stanton, M. Nucleic acid aptamers for target validation and therapeutic applications. J. Biomol. Tech. 2005, 16, 224–234.

    Google Scholar 

  5. Niidome, T.; Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther. 2002, 9, 1647–1652.

    Article  Google Scholar 

  6. Herweijer, H.; Wolff, J.A. Progress and prospects: Naked DNA gene transfer and therapy. Gene Ther. 2003, 10, 453–458.

    Article  Google Scholar 

  7. El-Aneed, A. An overview of current delivery systems in cancer gene therapy. J. Control. Release 2004, 94, 1–14.

    Article  Google Scholar 

  8. Wong, S.Y.; Pelet, J.M.; Putnam, D. Polymer systems for gene delivery—Past, present, and future. Prog. Polym. Sci. 2007, 32, 799–837.

    Article  Google Scholar 

  9. Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346–358.

    Article  Google Scholar 

  10. Marshall, E. Gene therapy death prompts review of adenovirus vector. Science 1999, 286, 2244–2245.

    Article  Google Scholar 

  11. Cross, D.; Burmester, J.K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res. 2006, 4, 218–227.

    Article  Google Scholar 

  12. Ogris, M.; Wagner, E. Targeting tumors with non-viral gene delivery systems. Drug Discov. Today 2002, 7, 479–485.

    Article  Google Scholar 

  13. Son, S.; Namgung, R.; Kim, J.; Singha, K.; Kim, W.J. Bioreducible polymers for gene silencing and delivery. Acc. Chem. Res. 2012, 45, 1100–1112.

    Article  Google Scholar 

  14. Saranya, N.; Moorthi, A.; Saravanan, S.; Devi, M.P.; Selvamurugan, N. Chitosan and its derivatives for gene delivery. Int. J. Biol. Macromol. 2011, 48, 234–238.

    Article  Google Scholar 

  15. Dass, C.R.; Choong, P.F.M. Selective gene delivery for cancer therapy using cationic liposomes: In vivo proof of applicability. J. Control. Release 2006, 113, 155–163.

    Article  Google Scholar 

  16. Anglin, E.J.; Cheng, L.Y.; Freeman, W.R.; Sailor, M.J. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 2008, 60, 1266–1277.

    Article  Google Scholar 

  17. Pastor, E.; Matveeva, E.; Valle-Gallego, A.; Goycoolea, F.M.; Garcia-Fuentes, M. Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles. Colloids Surf. B 2011, 88, 601–609.

    Article  Google Scholar 

  18. Simion, M.; Ruta, L.; Mihailescu, C.; Kleps, I.; Bragaru, A.; Miu, M.; Ignat, T.; Baciu, I. Porous silicon used as support for protein microarray. Superlattices Microstruct. 2009, 46, 69–76.

    Article  Google Scholar 

  19. Vale, N.; Mäkilä, E.; Salonen, J.; Gomes, P.; Hirvonen, J.; Santos, H.A. New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur. J. Pharm. Biopharm. 2012, 81, 314–323.

    Article  Google Scholar 

  20. DeLouise, L.A.; Miller, B.L. Quantatitive assessment of enzyme immobilization capacity in porous silicon. Anal. Chem. 2004, 76, 6915–6920.

    Article  Google Scholar 

  21. Kafshgari, M.H.; Cavallaro, A.; Delalat, B.; Harding, F.J.; McInnes, S.J.P.; Mäkilä, E.; Salonen, J.; Vasilev, K.; Voelcker, N.H. Nitric oxide-releasing porous silicon nanoparticles. Nanoscale Res. Lett. 2014, 9, 333.

    Google Scholar 

  22. Hochbaum, A.I.; Gargas, D.; Hwang, Y.J.; Yang, P.D. Single crystalline mesoporous silicon nanowires. Nano Lett. 2009, 9, 3550–3554.

    Article  Google Scholar 

  23. Jarvis, K.L.; Barnes, T.J.; Prestidge, C.A. Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv. Colloid Interface Sci. 2012, 175, 25–38.

    Article  Google Scholar 

  24. Wu, E.C.; Andrew, J.S.; Cheng, L.Y.; Freeman, W.R.; Pearson, L.; Sailor, M.J. Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 2011, 32, 1957–1966.

    Article  Google Scholar 

  25. Tanaka, T.; Mangala, L.S.; Vivas-Mejia, P.E.; Nieves-Alicea, R.; Mann, A.P.; Mora, E.; Han, H.D.; Shahzad, M.M.K.; Liu, X.W.; Bhavane, R. et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 2010, 70, 3687–3696.

    Article  Google Scholar 

  26. Canham, L.T. Properties of Porous Silicon. The Institution of Electrical Engineers: London, 1997.

    Google Scholar 

  27. Low, S.P.; Williams, K.A.; Canham, L.T.; Voelcker, N.H. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 2006, 27, 4538–4546.

    Article  Google Scholar 

  28. McInnes, S.J.P.; Voelcker, N.H. Silicon–polymer hybrid materials for drug delivery. Future Med. Chem. 2009, 1, 1051–1074.

    Article  Google Scholar 

  29. Bimbo, L.M.; Sarparanta, M.; Santos, H.A.; Airaksinen, A.J.; Mäkilä, E.; Laaksonen, T.; Peltonen, L.; Lehto, V.P.; Hirvonen, J.; Salonen, J. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 2010, 4, 3023–3032.

    Article  Google Scholar 

  30. Sarparanta, M.; Bimbo, L.M.; Rytkönen, J.; Mäkilä, E.; Laaksonen, T.J.; Laaksonen, P.; Nyman, M.; Salonen, J.; Linder, M.B.; Hirvonen, J. et al. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: Stability, plasma protein adsorption and biodistribution. Mol. Pharmaceutics 2012, 9, 654–663.

    Article  Google Scholar 

  31. Jalkanen, T.; Mäkilä, E.; Sakka, T.; Salonen, J.; Ogata, Y.H. Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors. Nanoscale Res. Lett. 2012, 7, 311.

    Article  Google Scholar 

  32. Jiang, X.; Chen, L.R.; Zhong, W. A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydr. Polym. 2003, 54, 457–463.

    Article  Google Scholar 

  33. Liu, D.F.; Bimbo, L.M.; Mäkilä, E.; Villanova, F.; Kaasalainen, M.; Herranz-Blanco, B.; Caramella, C.M.; Lehto, V.P.; Salonen, J.; Herzig, K.H. et al. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. J. Control. Release 2013, 170, 268–278.

    Article  Google Scholar 

  34. Kovalainen, M.; Mönkäre, J.; Kaasalainen, M.; Riikonen, J.; Lehto, V.P.; Salonen, J.; Herzig, K.H.; Järvinen, K. Development of porous silicon nanocarriers for parenteral peptide delivery. Mol. Pharmaceutics 2013, 10, 353–359.

    Article  Google Scholar 

  35. Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001, 70, 1–20.

    Article  Google Scholar 

  36. Li, X.; Xie, Q.R.; Zhang, J.X.; Xia, W.L.; Gu, H.C. The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 2011, 32, 9546–9556.

    Article  Google Scholar 

  37. Jayakumar, R.; Chennazhi, K.P.; Muzzarelli, R.A.A.; Tamura, H.; Nair, S.V.; Selvamurugan, N. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr. Polym. 2010, 79, 1–8.

    Article  Google Scholar 

  38. Kafshgari, M.H.; Harding, F.J.; Voelcker, N.H. Insights into cellular uptake of nanoparticles. Curr. Drug Deliv. 2014, 12, 63–77.

    Article  Google Scholar 

  39. Katas, H.; Alpar, H.O. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release 2006, 115, 216–225.

    Article  Google Scholar 

  40. Mao, S.R.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 2010, 62, 12–27.

    Article  Google Scholar 

  41. Wu, J.M.; Sailor, M.J. Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv. Funct. Mater. 2009, 19, 733–741.

    Article  Google Scholar 

  42. Kaasalainen, M.; Mäkilä, E.; Riikonen, J.; Kovalainen, M.; Järvinen, K.; Herzig, K.H.; Lehto, V.P.; Salonen, J. Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. Int. J. Pharm. 2012, 431, 230–236.

    Article  Google Scholar 

  43. Henry, D.C. The cataphoresis of suspended particles. Part I.—The equation of cataphoresis. Proc. R. Soc. London A-Math. Phys. Sci. 1931, 133, 106–129.

    Article  Google Scholar 

  44. Jiang, X.; Chen, L.; Zhong, W. A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydr. Polym. 2003, 54, 457–463.

    Article  Google Scholar 

  45. Kafshgari, M.H.; Mansouri, M.; Khorram, M.; Samimi, A.; Osfouri, S. Bovine serum albumin-loaded chitosan particles: An evaluation of effective parameters on fabrication, characteristics, and in vitro release in the presence of noncovalent interactions. Int. J. Polym. Mater. Polym. Biomater. 2012, 61, 1079–1090.

    Article  Google Scholar 

  46. Fadeel, B.; Garcia-Bennett, A.E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 2010, 62, 362–374.

    Article  Google Scholar 

  47. Santos, H.A.; Riikonen, J.; Salonen, J.; Mäkilä, E.; Heikkilä, T.; Laaksonen, T.; Peltonen, L.; Lehto, V.P.; Hirvonen, J. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010, 6, 2721–2731.

    Article  Google Scholar 

  48. Pollak, R.D.; Rosenkranz, H.S. Metabolic effects of hydroxyurea on BHK-21 cells transformed with polyoma virus. Cancer Res. 1967, 27, 1214–1224.

    Google Scholar 

  49. Wang, Z.Y.; Li, N.; Zhao, J.; White, J.C.; Qu, P.; Xing, B.S. CuO nanoparticle interaction with human epithelial cells: Cellular uptake, location, export, and genotoxicity. Chem. Res. Toxicol. 2012, 25, 1512–1521.

    Article  Google Scholar 

  50. Vasu, S.K.; Forbes, D.J. Nuclear pores and nuclear assembly. Curr. Opin. Cell Biol. 2001, 13, 363–375.

    Article  Google Scholar 

  51. Shahbazi, M.A.; Hamidi, M.; Mäkilä, E.M.; Zhang, H.B.; Almeida, P.V.; Kaasalainen, M.; Salonen, J.J.; Hirvonen, J.T.; Santos, H.A. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 2013, 34, 7776–7789.

    Article  Google Scholar 

  52. Zhu, M.; Zhu, Y.F.; Zhang, L.X.; Shi, J.L. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Sci. Technol. Adv. Mater. 2013, 14, 045005.

    Article  Google Scholar 

  53. Park, J.H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331–336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas H. Voelcker.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafshgari, M.H., Delalat, B., Tong, W.Y. et al. Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles. Nano Res. 8, 2033–2046 (2015). https://doi.org/10.1007/s12274-015-0715-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0715-0

Keywords

Navigation