Skip to main content
Log in

Influence of Particle Size on the Ultraviolet Spectrum of Particulate-Containing Solutions: Implications for In-Situ Concentration Monitoring Using UV/Vis Fiber-Optic Probes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To critically evaluate the effect of submicron and micron-sized organic particulates on the ultraviolet (UV) absorption spectra of aqueous systems and assess the applicability of UV/Vis fiber-optic probes for in-situ concentration monitoring in the presence of particles of different sizes.

Methods

UV absorbance spectra were obtained for aqueous felodipine suspensions containing a range of particle sizes (300 nm–400 μm) and suspension concentrations and for methanolic solutions of different concentrations and amorphous films of different thicknesses. Select suspensions were further characterized using nuclear magnetic resonance (NMR) experiments. Mie theory was used to provide insight into the role of particle size on scattering and absorption of UV radiation.

Results

Large increases in absorbance as a function of total suspension concentration were observed for nanosuspensions but not for the other particle sizes evaluated. NMR measurements of solution concentration indicated that the observed increases in UV absorbance values for these systems were not caused by increases in the concentration of dissolved molecules, implying that nanoparticles of felodipine might absorb UV light. Mie theory-based calculations enabled reconstruction of the experimental observations and supported this hypothesis.

Conclusions

For solutions containing small (submicron) felodipine particles, UV spectra were influenced by absorption of the particles and contributions from absorption of dissolved molecules and scattering of the particles. Caution should be applied when using in situ UV/VIS-probes to monitor the amount of dissolved material during dissolution, in particular when small particles are present (e.g. dissolution of nanoparticulate formulations) or generated (e.g. precipitation of supersaturated solutions) in the dissolution medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Berger CM, Tsinman O, Voloboy D, Lipp D, Stones S, Avdeef A. Technical note: miniaturized intrinsic dissolution rate (Mini-IDR (TM)) measurement of griseofulvin and carbamazepine. Dissolution Technol. 2007;14(4):39–41.

    CAS  Google Scholar 

  2. Avdeef A, Tsinman O. Miniaturized rotating disk intrinsic dissolution rate measurement: effects of buffer capacity in comparisons to traditional Wood’s apparatus. Pharm Res. 2008;25(11):2613–27.

    Article  PubMed  CAS  Google Scholar 

  3. Tsinman K, Avdeef A, Tsinman O, Voloboy D. Powder dissolution method for estimating rotating disk intrinsic dissolution rates of low solubility drugs. Pharm Res. 2009;26(9):2093–100.

    Article  PubMed  CAS  Google Scholar 

  4. Avdeef A, Tsinman K, Tsinman O, Sun N, Voloboy D. Miniaturization of powder dissolution measurement and estimation of particle size. Chem Biodivers. 2009;6(11):1796–811.

    Article  PubMed  CAS  Google Scholar 

  5. Polster CS, Atassi F, Wu S, Sperry DC. Use of artificial stomach-duodenum model for investigation of dosing fluid effect on clinical trial variability. Mol Pharmaceutics. 2010;7(5):1533–8.

    Article  CAS  Google Scholar 

  6. Josefson M, Johansson E, Torstensson A. Optical fiber spectrometry in turbid solutions by multivariate calibration applied to tablet dissolution testing. Anal Chem. 1988;60(24):2666–71.

    Article  PubMed  CAS  Google Scholar 

  7. Brown CW, Lin J. Interfacing a fiberoptic probe to a diode-array UV-visible spectrophotometer for drug dissolution tests. Appl Spectrosc. 1993;47(5):615–8.

    Article  CAS  Google Scholar 

  8. Chen CS, Brown CW. A drug dissolution monitor employing multiple fiber optic probes and a UV/visible diode-array spectrophotometer. Pharm Res. 1994;11(7):979–83.

    Article  PubMed  CAS  Google Scholar 

  9. Cho J, Gemperline PJ, Walker D. Wavelength calibration method for a CCD detector and multichannel fiber-optic probes. Appl Spectrosc. 1995;49(12):1841–5.

    Article  CAS  Google Scholar 

  10. Cho JH, Gemperline PJ, Salt A, Walker DS. UV-visible spectral dissolution monitoring by in-situ fiberoptic probes. Anal Chem. 1995;67(17):2858–63.

    Article  CAS  Google Scholar 

  11. Aldridge PK, Melvin DW, Williams BA, Bratin K, Kostek LJ, Sekulic SS. A robotic dissolution system with online fiberoptic UV analysis. J Pharm Sci. 1995;84(8):909–14.

    Article  PubMed  CAS  Google Scholar 

  12. Aldridge PK, Kostek LJ. In situ fiber optic dissolution analysis. Dissolution Technol. 1995;2(4):10–1.

    Google Scholar 

  13. Rogers P, Hailey PA, Johnson GA, Dight VA, Read C, Shingler A, et al. A comprehensive and flexible approach to the automated-dissolution testing of pharmaceutical drug products incorporating direct UV-vis fiber-optic analysis, on-line fluorescence analysis, and off-line storage options. Lab Rob Auto. 2000;12(1):12–22.

    Article  CAS  Google Scholar 

  14. Hengst R, Rolli R. Hollow shaftTM sampling method in dissolution testing. Dissolution Technol. 1999;6(1):18–20.

    Google Scholar 

  15. Schatz C, Ulmschneider M, Altermatt R, Marrer S. Hollow shaft sampling with fiber optics. Dissolution Technol. 2000;7(1):20–1.

    Google Scholar 

  16. Schatz C, Ulmschneider M, Altermatt R, Marrer S, Altorfer H. Thoughts on fiber optics in dissolution testing. Dissolution Technol. 2001;8(2):1–5.

    Google Scholar 

  17. Bynum K, Roinestad K, Kassis A, Pocreva J, Gehrlein L, Cheng F, et al. Analytical performance of a fiber optic probe dissolution system. Dissolution Technol. 2001;8(4):1–8.

    Google Scholar 

  18. Johansson J, Cauchi M, Sundgren M. Multiple fiber-optic dual-beam UV/Vis system with application to dissolution testing. J Pharm Biomed Anal. 2002;29(3):469–76.

    Article  PubMed  CAS  Google Scholar 

  19. Lu X, Lozano R, Shah P. In situ dissolution testing using different UV fiber optic probes and instruments. Dissolution Technol. 2003;10(4):6–15.

    Google Scholar 

  20. Inman GW. Quantitative assessment of probe and spectrometer performance for a multi-channel CCD-based fiber optic testing system. Dissolution Technol. 2003;10(4):26–32.

    Google Scholar 

  21. Muhammad T, Wang J, Li-Wan M, Chen J. Monitoring dissolution rate of amiodarone tablets by a multiple fiber-optic sensor system. Dissolution Technol. 2008;15(1):22–7.

    CAS  Google Scholar 

  22. Martin CA. Evaluating the utility of fiber optic analysis for dissolution testing of drug products. Dissolution Technol. 2003;10(4):37–40.

    Google Scholar 

  23. Toher CJ, Nielsen PE, Foreman AS, Avdeef A. In situ fiber optic dissolution monitoring of a vitamin B12 solid dosage formulation. 2003;10(4):20–5.

  24. Gray VA. Dissolution testing using fiber optics—a regulatory perspective. Am Pharm Rev. 2003;6(2):26–30.

    CAS  Google Scholar 

  25. Gray VA. Dissolution testing using fiber optics—a regulatory perspective. Dissolution Technol. 2003;10(4):33–6 (reprint).

    Google Scholar 

  26. Mirza T, Liu Q, Vivilecchia R, Joshi Y. Comprehensive validation scheme for in situ fiber optics dissolution method for pharmaceutical drug product testing. J Pharm Sci. 2009;98(3):1086–94.

    Article  PubMed  CAS  Google Scholar 

  27. Liu L, Fitzgerald G, Embry M, Cantu R, Pack B. Technical evaluation of a fiber-optic probe dissolution system. Dissolution Technol. 2008;15(1):10–20.

    CAS  Google Scholar 

  28. Wiberg KH, Hultin UK. Multivariate chemometric approach to fiber-optic dissolution testing. Anal Chem. 2006;78(14):5076–85.

    Article  PubMed  CAS  Google Scholar 

  29. Nie K, Li L, Li XX, Geng DS, Zhang QZ, Tuo MF, et al. In situ fiber-optic dissolution assisted by a mathematical separation model of dynamic three-wavelength K-ratio spectrophotometry. Dissolution Technol. 2010;17(2):15–8.

    CAS  Google Scholar 

  30. Van de Hulst HC. Light scattering by small particles. New York: Dover; 1981.

    Google Scholar 

  31. Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. New York: Wiley; 1983.

    Google Scholar 

  32. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL. Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B. 1997;101(19):3706–12.

    Article  CAS  Google Scholar 

  33. Creighton JA, Eadon DG. Ultraviolet visible absorption-spectra of the colloidal metallic elements. J Chem Soc Faraday Trans. 1991;87(24):3881–91.

    Article  CAS  Google Scholar 

  34. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110(14):7238–48.

    Article  PubMed  CAS  Google Scholar 

  35. Horn D, Rieger J. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Chem Int Ed Engl. 2001;40(23):4331–61.

    Google Scholar 

  36. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discovery. 2004;3(9):785–96.

    Article  CAS  Google Scholar 

  37. Kesisoglou F, Panmai S, Wu Y. Nanosizing—Oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.

    Article  PubMed  CAS  Google Scholar 

  38. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.

    Article  PubMed  Google Scholar 

  39. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  PubMed  CAS  Google Scholar 

  40. Lipinski C. Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev. 2002;5(1):82–5.

    Google Scholar 

  41. Lindfors L, Forssen S, Skantze P, Skantze U, Zackrisson A, Olsson U. Amorphous drug nanosuspensions. 2. Experimental determination of bulk monomer concentrations. Langmuir. 2006;22(3):911–6.

    Article  PubMed  CAS  Google Scholar 

  42. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36(8):1627–39.

    Article  CAS  Google Scholar 

  43. Van Eerdenbrugh B, Baird JA, Taylor LS. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation-classification and comparison with crystallization tendency from undercooled melts. J Pharm Sci. 2010;99(9):3826–38.

    PubMed  Google Scholar 

  44. Uesawa Y, Mohri K. Relationship between lipophilicities of 1, 4-dihydropyridine derivatives and pharmacokinetic interaction strengths with grapefruit juice. Yakugaku Zasshi. 2008;128(1):117–22.

    Article  PubMed  CAS  Google Scholar 

  45. Fossheim R. Crystal structure of the dihydropyridine Ca2+ antagonist felodipine—dihydropyridine binding prerequisites assessed from crystallographic data. J Med Chem. 1986;29(2):305–7.

    Article  PubMed  CAS  Google Scholar 

  46. Grant DJW, Brittain HG. Solubility of pharmaceutical solids. In: Brittain HG, editor. Physical characterization of pharmaceutical solids, drugs and the pharmaceutical sciences. New York: Marcel Dekker, Inc.; 1995. p. 321–86.

    Google Scholar 

  47. Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Van den Mooter G, et al. Solubility increases associated with crystalline drug nanoparticles: methodologies and significance. Mol Pharmaceutics. 2010;7(5):1858–70.

    Article  Google Scholar 

  48. Alonzo DE, Zhang GGZ, Zhou DL, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    Article  PubMed  CAS  Google Scholar 

  49. Lindfors L, Skantze P, Skantze U, Westergren J, Olsson U. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir. 2007;23(19):9866–74.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERC-SOPS) (EEC-0540855). The authors thank the National Science Foundation, Directorate for Mathematical & Physical Sciences, Division of Materials Research for financial support (NSF MPS-DMR) (DMR-0804609). BVE is a Postdoctoral Researcher of the Fonds voor Wetenschappelijk Onderzoek, Flanders, Belgium. Prof. Dr. Ganesan Narsimhan and Dr. Xiaoyu Wu (Biochemical and Food Process Engineering, Department of Agricultural and Biological Engineering, Purdue University) are thanked for enabling the laser diffraction experiments. Dr. Huaping Mo (Purdue Interdepartmental NMR Facility, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University) is acknowledged for the NMR experiments. The authors would like to thank Prof. Dr. James D. Litster for use of the dynamic light scattering instrument. Pritesh Kerai is acknowledged for his assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Eerdenbrugh, B., Alonzo, D.E. & Taylor, L.S. Influence of Particle Size on the Ultraviolet Spectrum of Particulate-Containing Solutions: Implications for In-Situ Concentration Monitoring Using UV/Vis Fiber-Optic Probes. Pharm Res 28, 1643–1652 (2011). https://doi.org/10.1007/s11095-011-0399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0399-4

KEY WORDS

Navigation