Skip to main content

Advertisement

Log in

Effective Gene Delivery to Mesenchymal Stem Cells Based on the Reverse Transfection and Three-Dimensional Cell Culture System

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To enhance the level and prolong the duration of gene expression for gene-engineered rat mesenchymal stem cells (MSCs) using non-viral vector.

Methods

A novel transfection system based on reverse transfection method and three-dimensional (3D) scaffold was developed. The reverse gene transfection system was evaluated for transfection efficiency compared to conventional methods. Collagen sponge and polyethylene terephthalate non-woven fabric were introduced as scaffolds to perform 3D culture with reverse transfection. pDNA coding TGFβ-1 was delivered to MSCs to assess its ability in inducing chondrogenesis with the 3D non-viral reverse transfection system.

Results

The reverse transfection method induced higher transgene levels than the conventional transfection in the presence of serum. The electric charge of the anionic gelatin plays an important role in this system by affecting the release pattern of the gene complexes and through the adsorption of serum protein to the substrate. During a long-time in vitro culture, MSCs cultured on 3D scaffolds exhibited a higher transgene expression level and more sustained transgene expression than those cultured and transfected on the two-dimensional substrate.

Conclusions

The combination of reverse transfection system with 3D cell culture scaffold benefits the cell proliferation and long-time gene transfection of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BCA:

bicinchonic acid

CDI:

N, N’—carbonyldiimidazole

CPZ:

chlorpromazine

DMEM:

Dulbecco’s modified Eagle’s medium

MSCs:

mesenchymal stem cells

PEI:

poly (ethylene-imine)

PET:

polyethylene terephthalate

TGFβ-1:

transforming growth factor β-1

REFERENCES

  1. Chung C, Burdick JA. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng A. 2009;15:243–54.

    Article  CAS  Google Scholar 

  2. Okazaki A, Jo J, Tabata Y. A reverse transfection technology to genetically engineer adult stem cells. Tissue Eng. 2007;13:245–51.

    Article  PubMed  CAS  Google Scholar 

  3. Marshall E. Gene therapy death prompts review of adenovirus vector. Science. 1999;286:2244–5.

    Article  PubMed  CAS  Google Scholar 

  4. Cho CW, Cho YS, Kang BT, Hwang JS, Park SN, Yoon DY. Improvement of gene transfer to cervical cancer cell lines using non-viral agents. Cancer Lett. 2001;162:75–85.

    Article  PubMed  CAS  Google Scholar 

  5. Yang X, Walboomers XF, van den Dolder J, Yang F, Bian Z, Fan M, et al. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng A. 2008;14:71–81.

    Article  CAS  Google Scholar 

  6. Bisht S, Bhakta G, Mitra S, Maitra A. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharm. 2005;288:157–68.

    Article  PubMed  CAS  Google Scholar 

  7. Huang YZ, Gao JQ, Chen JL, Liang WQ. Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer. Colloids Surf B Biointerfaces. 2006;49:158–64.

    Article  PubMed  CAS  Google Scholar 

  8. Chen JL, Wang H, Gao JQ, Chen HL, Liang WQ. Liposomes modified with polycation used for gene delivery: preparation, characterization and transfection in vitro. Int J Pharm. 2007;343:255–61.

    Article  PubMed  CAS  Google Scholar 

  9. Chen JL, Hu Y, Shuai WP, Chen HL, Liang WQ, Gao JQ. Telomerase-targeting antisense oligonucleotides carried by polycation liposomes enhance the growth inhibition effect on tumor cells. J Biomed Mater Res B Appl Biomater. 2009;89B:362–8.

    Article  PubMed  CAS  Google Scholar 

  10. Huang Y, Chen J, Chen X, Gao J, Liang W. PEGylated synthetic surfactant vesicles (Niosomes): novel carriers for oligonucleotides. J Mater Sci Mater Med. 2008;19:607–14.

    Article  PubMed  CAS  Google Scholar 

  11. Gao JQ, Zhao QQ, Lv TF, Shuai WP, Zhou J, Tang GP, et al. Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity. Int J Pharm. 2010;387:286–94.

    Article  PubMed  CAS  Google Scholar 

  12. De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:292–307.

    Article  PubMed  Google Scholar 

  13. Uchimura E, Yamada S, Nomura T, Matsumoto K, Fujita S, Miyake M, et al. Reverse transfection using antibodies against a cell surface antigen in mammalian adherent cell lines. J Biosci Bioeng. 2007;104:152–5.

    Article  PubMed  CAS  Google Scholar 

  14. Souza GR, Molina JR, Raphael RM, Ozawa MG, Stark DJ, Levin CS, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol. 2010;5:291–6.

    Article  PubMed  CAS  Google Scholar 

  15. Fernandes TG, Kwon SJ, Bale SS, Lee MY, Diogo MM, Clark DS, et al. Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnol Bioeng. 2010;106:106–18.

    PubMed  CAS  Google Scholar 

  16. Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods. 2010;16:735–49.

    Article  PubMed  CAS  Google Scholar 

  17. Pek YS, Wan AC, Shekaran A, Zhuo L, Ying JY. A thixotropic nanocomposite gel for three-dimensional cell culture. Nat Nanotechnol. 2008;3:671–5.

    Article  PubMed  CAS  Google Scholar 

  18. Xie Y, Hardouin P, Zhu Z, Tang T, Dai K, Lu J. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold. Tissue Eng. 2006;12:3535–43.

    Article  PubMed  CAS  Google Scholar 

  19. Kyle AH, Huxham LA, Chiam AS, Sim DH, Minchinton AI. Direct assessment of drug penetration into tissue using a novel application of three-dimensional cell culture. Cancer Res. 2004;64:6304–9.

    Article  PubMed  CAS  Google Scholar 

  20. Green JA, Yamada KM. Three-dimensional microenvironments modulate fibroblast signaling responses. Adv Drug Deliv Rev. 2007;59:1293–8.

    Article  PubMed  CAS  Google Scholar 

  21. Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10.

    Article  PubMed  CAS  Google Scholar 

  22. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294:1708–12.

    Article  PubMed  CAS  Google Scholar 

  23. Jang JH, Shea LD. Controllable delivery of non-viral DNA from porous scaffolds. J Control Release. 2003;86:157–68.

    Article  PubMed  CAS  Google Scholar 

  24. Storrie H, Mooney DJ. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Deliv Rev. 2006;58:500–14.

    Article  PubMed  CAS  Google Scholar 

  25. Jo J, Ikai T, Okazaki A, Yamamoto M, Hirano Y, Tabata Y. Expression profile of plasmid DNA by spermine derivatives of pullulan with different extents of spermine introduced. J Control Release. 2007;118:389–98.

    Article  PubMed  CAS  Google Scholar 

  26. Bengali Z, Pannier AK, Segura T, Anderson BC, Jang JH, Mustoe TA, et al. Gene delivery through cell culture substrate adsorbed DNA complexes. Biotechnol Bioeng. 2005;90:290–302.

    Article  PubMed  CAS  Google Scholar 

  27. Goncalves C, Mennesson E, Fuchs R, Gorvel JP, Midoux P, Pichon C. Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol Ther. 2004;10:373–85.

    Article  PubMed  CAS  Google Scholar 

  28. Buma P, Pieper JS, van Tienen T, van Susante JL, van der Kraan PM, Veerkamp JH, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects–a study in rabbits. Biomaterials. 2003;24:3255–63.

    Article  PubMed  CAS  Google Scholar 

  29. Toghraie FS, Chenari N, Gholipour MA, Faghih Z, Torabinejad S, Dehghani S, et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. Knee, 2011;18:71–5

    Google Scholar 

  30. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials. 2005;26:7095–103.

    Article  PubMed  CAS  Google Scholar 

  31. Sakaguchi N, Kojima C, Harada A, Koiwai K, Shimizu K, Emi N, et al. Generation of highly potent nonviral gene vectors by complexation of lipoplexes and transferrin-bearing fusogenic polymer-modified liposomes in aqueous glucose solution. Biomaterials. 2008;29:1262–72.

    Article  PubMed  CAS  Google Scholar 

  32. Goppert TM, Muller RH. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm. 2005;302:172–86.

    Article  PubMed  CAS  Google Scholar 

  33. Potier E, Ferreira E, Meunier A, Sedel L, Logeart-Avramoglou D, Petite H. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 2007;13:1325–31.

    Article  PubMed  CAS  Google Scholar 

  34. Lechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev. 2005;57:755–67.

    Article  PubMed  CAS  Google Scholar 

  35. Zheng G, Chen J, Li H, Glickson JD. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc Natl Acad Sci USA. 2005;102:17757–62.

    Article  PubMed  CAS  Google Scholar 

  36. Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release. 2009;136:54–61.

    Article  PubMed  CAS  Google Scholar 

  37. van der Aa MA, Huth US, Hafele SY, Schubert R, Oosting RS, Mastrobattista E, et al. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm Res. 2007;24:1590–8.

    Article  PubMed  CAS  Google Scholar 

  38. von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, Ogris M. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther. 2006;14:745–53.

    Article  Google Scholar 

  39. Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther. 2005;12:468–74.

    Article  PubMed  CAS  Google Scholar 

  40. von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, Ogris M. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther. 2006;14:745–53.

    Article  Google Scholar 

  41. Hosseinkhani H, Azzam T, Kobayashi H, Hiraoka Y, Shimokawa H, Domb AJ, et al. Combination of 3D tissue engineered scaffold and non-viral gene carrier enhance in vitro DNA expression of mesenchymal stem cells. Biomaterials. 2006;27:4269–78.

    Article  PubMed  CAS  Google Scholar 

  42. Saul JM, Linnes MP, Ratner BD, Giachelli CM, Pun SH. Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression. Biomaterials. 2007;28(31):4705–16.

    Article  PubMed  CAS  Google Scholar 

  43. Liang D, Luu YK, Kim K, Hsiao BS, Hadjiargyrou M, Chu B. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res. 2005;33:170.

    Article  Google Scholar 

  44. Li Y, Ma T, Kniss DA, Yang ST, Lasky LC. Human cord cell hematopoiesis in three-dimensional nonwoven fibrous matrices: in vitro simulation of the marrow microenvironment. J Hematother Stem Cell Res. 2001;10:355–68.

    Article  PubMed  CAS  Google Scholar 

  45. Ma T, Li Y, Yang ST, Kniss DA. Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development. Biotechnol Bioeng. 2000;70:606–18.

    Article  PubMed  CAS  Google Scholar 

  46. Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol. 2010;184:1049–61.

    Article  PubMed  Google Scholar 

  47. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  PubMed  CAS  Google Scholar 

  48. De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:292–307.

    Article  PubMed  Google Scholar 

  49. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA. 2010;107:4872–7.

    Article  PubMed  CAS  Google Scholar 

  50. Goepfert C, Slobodianski A, Schilling AF, Adamietz P, Portner R. Cartilage engineering from mesenchymal stem cells. Adv Biochem Eng Biotechnol. 2010;123:163–200.

    PubMed  CAS  Google Scholar 

  51. Huang AH, Motlekar NA, Stein A, Diamond SL, Shore EM, Mauck RL. High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann Biomed Eng. 2008;36:1909–21.

    Article  PubMed  Google Scholar 

  52. Hosseinkhani H, Hosseinkhani M, Gabrielson NP, Pack DW, Khademhosseini A, Kobayashi H. DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A. 2008;85:47–60.

    PubMed  Google Scholar 

  53. De Laporte L, Yan AL, Shea LD. Local gene delivery from ECM-coated poly(lactide-co-glycolide)multiple channel bridges after spinal cord injury. Biomaterials. 2009;30:2361–8.

    Article  PubMed  Google Scholar 

  54. Holladay C, Keeney M, Greiser U, Murphy M, O’Brien T, Pandit A. A matrix reservoir for improved control of non-viral gene delivery. J Control Release. 2009;136:220–5.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (30873173, 30973648 by Jian-Qing Gao, 81001410 by Yu-Lan Hu); Zhejiang Provincial Natural Science Foundation of China (R2090176 by Jian-Qing Gao); China-Japan Scientific Cooperation Program (81011140077 by Jian-Qing Gao and Yasuhiko Tabata); NSFC, China; JSPS, Japan; the Fundamental Research Funds for the Central Universities (by Jian-Qing Gao); the Foundation of Hangzhou Health Bureau (2009B05 by Gang Wang), and Zijin program of Zhejiang University (188020-544802[78] by Min Han). We thank Ms. Hong-Yu Lu for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qing Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, CX., Li, N., Hu, YL. et al. Effective Gene Delivery to Mesenchymal Stem Cells Based on the Reverse Transfection and Three-Dimensional Cell Culture System. Pharm Res 28, 1577–1590 (2011). https://doi.org/10.1007/s11095-011-0390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0390-0

KEY WORDS

Navigation