Skip to main content
Log in

Effects of Surfactants on Lipase Structure, Activity, and Inhibition

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Lipase inhibitors are the main anti-obesity drugs prescribed these days, but the complexity of their mechanism of action is making it difficult to develop new molecules for this purpose. The efficacy of these drugs is known to depend closely on the physico-chemistry of the lipid-water interfaces involved and on the unconventional behavior of the lipases which are their target enzymes. The lipolysis reaction which occurs at an oil-water interface involves complex equilibria between adsorption-desorption processes, conformational changes and catalytic mechanisms. In this context, surfactants can induce significant changes in the partitioning of the enzyme and the inhibitor between the water phase and lipid-water interfaces. Surfactants can be found at the oil-water interface where they compete with lipases for adsorption, but also in solution in the form of micellar aggregates and monomers that may interact with hydrophobic parts of lipases in solution. These various interactions, combined with the emulsification and dispersion of insoluble substrates and inhibitors, can either promote or decrease the activity and the inhibition of lipases. Here, we review some examples of the various effects of surfactants on lipase structure, activity and inhibition, which show how complex the various equilibria involved in the lipolysis reaction tend to be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

β-OG:

β-octyl glucoside

BSA:

bovine serum albumin

CMC:

critical micellar concentration

DGL:

dog gastric lipase

EPR:

electron paramagnetic resonance

E600:

diethyl p-nitrophenyl phosphate

GPLRP2:

guinea pig pancreatic lipase-related protein 2

HPL:

human pancreatic lipase

NaTDC:

sodium taurodeoxycholate

PPL:

porcine pancreatic lipase

SDS:

sodium dodecyl sulphate

SDSL:

site-directed spin labeling

TAG:

triacylglycerol

TGME:

tetraethylene glycol monooctyl ether

THL:

tetrahydrolipstatin (Orlistat)

TLL:

Thermomyces lanuginosus lipase

YLLip2:

Yarrowia lipolytica Lip2

REFERENCES

  1. Carrière F, Renou C, Ransac S, Lopez V, De Caro J, Ferrato F, et al. Inhibition of gastrointestinal lipolysis by Orlistat during digestion of test meals in healthy volunteers. Am J Physiol Gastrointest Liver Physiol. 2001;281(1):G16–28.

    PubMed  Google Scholar 

  2. Tiss A, Lengsfeld H, Verger R. A comparative kinetic study on human pancreatic and Thermomyces lanuginosa lipases: inhibitory effects of tetrahydrolipstatin in the presence of lipid substrates. J Mol Catal B Enzym. 2010;62:19–26.

    Article  CAS  Google Scholar 

  3. Lengsfeld H, Beaumier-Gallon G, Chahinian H, De Caro A, Verger R, Laugier R, et al. Physiology of gastrointestinal lipolysis and therapeutical use of lipases and digestive lipase inhibitors. In: Müller G, Petry S, editors. Lipases and phospholipases in drug development. Weinheim: Wiley-VCH; 2004. p. 195–223.

    Google Scholar 

  4. Ballinger A, Peikin S. Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol. 2002;440(2–3):109–17.

    Article  PubMed  CAS  Google Scholar 

  5. Kopelman P, Bryson A, Hickling R, Rissanen A, Rossner S, Toubro S, et al. Cetilistat (ATL-962), a novel lipase inhibitor: a 12-week randomized, placebo-controlled study of weight reduction in obese patients. Int J Obes Lond. 2007;31(3):494–9.

    Article  PubMed  CAS  Google Scholar 

  6. Bryson A, de la Motte S, Dunk C. Reduction of dietary fat absorption by the novel gastrointestinal lipase inhibitor cetilistat in healthy volunteers. Br J Clin Pharmacol. 2009;67(3):309–15.

    Article  PubMed  CAS  Google Scholar 

  7. Yamada Y, Kato T, Ogino H, Ashina S, Kato K. Cetilistat (ATL-962), a novel pancreatic lipase inhibitor, ameliorates body weight gain and improves lipid profiles in rats. Horm Metab Res. 2008;40(8):539–43.

    Article  PubMed  CAS  Google Scholar 

  8. Kopelman P, Groot Gde H, Rissanen A, Rossner S, Toubro S, Palmer R, et al. Weight loss, HbA1c reduction, and tolerability of cetilistat in a randomized, placebo-controlled phase 2 trial in obese diabetics: comparison with orlistat (Xenical). Obesity (Silver Spring). 2010;18(1):108–15.

    Article  CAS  Google Scholar 

  9. Tucci S, Boyland E, Halford J. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes Metab Syndr Obes. 2010;3:125–43.

    Article  PubMed  CAS  Google Scholar 

  10. Salem V, Bloom S. Approaches to the pharmacological treatment of obesity. Expert Rev Clin Pharmacol. 2010;3(1):73–88.

    Article  Google Scholar 

  11. Ben Ali Y, Chahinian H, Petry S, Muller G, Lebrun R, Verger R, et al. Use of an inhibitor to identify members of the hormone-sensitive lipase family. Biochemistry. 2006;45(47):14183–91.

    Article  PubMed  CAS  Google Scholar 

  12. Petry S, Baringhaus K-H, Schoenafinger K, Jung C, Kleine H, Müller G. High-throughput screening of hormone-sensitive lipase and subsequent. In: Müller G, Petry S, editors. Lipases and phospholipases in drug development. Weinheim: Wiley-VCH; 2004. p. 121–37.

    Google Scholar 

  13. Jin W, Millar JS, Broedl U, Glick JM, Rader DJ. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J Clin Invest. 2003;111(3):357–62.

    PubMed  CAS  Google Scholar 

  14. Cotes K, Bakala N'goma JC, Dhouib R, Douchet I, Maurin D, Carriere F, et al. Lipolytic enzymes in Mycobacterium tuberculosis. Appl Microbiol Biotechnol. 2008;78(5):741–9.

    Article  PubMed  CAS  Google Scholar 

  15. Mishra KC, de Chastellier C, Narayana Y, Bifani P, Brown AK, Besra GS, et al. Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY. Infect Immun. 2008;76(1):127–40.

    Article  PubMed  CAS  Google Scholar 

  16. Seibert G, Toti L, Wink J, inventors; Sanofi-Aventis, assignee. Use of cyclipostin derivatives for the treatment of mycobacterial infectious diseases. United States patent US 20090233884. 2009 Sep 17.

  17. Dowling S, Cox J, Cenedella RJ. Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo. Lipids. 2009;44(6):489–98.

    Article  PubMed  CAS  Google Scholar 

  18. Jaeger K-E, Ransac S, Dijkstra BW, Colson C, Vanheuvel M, Misset O. Bacterial lipases. FEMS Microbiol Rev. 1994;15(1):29–63.

    Article  PubMed  CAS  Google Scholar 

  19. Gilbert EJ. Pseudomonas lipases: biochemical properties and molecular cloning. Enzyme Microb Technol. 1993;15(8):634–45.

    Article  PubMed  CAS  Google Scholar 

  20. Huang AHC. Plant lipases. In: Borgström B, Brockman HL, editors. Lipases. Amsterdam: Elsevier; 1984. p. 419–42.

    Google Scholar 

  21. Mukherjee KD, Hills MJ. Lipases from plants. In: Woolley P, Petersen SB, editors. Lipases: their structure, biochemistry and application. Cambridge: Cambridge University Press; 1994. p. 49–75.

    Google Scholar 

  22. Carrière F, Bezzine S, Verger R. Molecular evolution of the pancreatic lipase and two related enzymes towards different substrate selectivities. J Mol Catal B Enzym. 1997;3:55–64.

    Article  Google Scholar 

  23. Carrière F, Gargouri Y, Moreau H, Ransac S, Rogalska E, Verger R. Gastric lipases: cellular, biochemical and kinetic aspects. In: Wooley P, Petersen SB, editors. Lipases: Their structure, biochemistry and application. Cambridge: Cambridge University Press; 1994. p. 181–205.

    Google Scholar 

  24. Alberghina L, Schmid RD, Verger R. Lipases: structure, mechanism, and genetic engineering. Weinheim: VCH; 1991.

    Google Scholar 

  25. Wooley P, Petersen SB. Lipases: their structure, biochemistry and applications. Cambridge: Cambridge University Press; 1994.

    Google Scholar 

  26. Brockerhoff H, Jensen RG. In: Brockerhoff H, Jensen RG, editors. Lipolytic enzymes. New York: Academic; 1974.

    Google Scholar 

  27. Borgström B, Erlanson C. In: Borgström B, Brockman HL, editors. Lipases. Amsterdam: Elsevier; 1984.

    Google Scholar 

  28. Aloulou A, Rodriguez JA, Fernandez S, Van Oosterhout D, Puccinelli D, Carriere F. Exploring the specific features of interfacial enzymology based on lipase studies. Biochim Biophys Acta, Mol Cell Biol Lipids. 2006;1761:995–1013.

    CAS  Google Scholar 

  29. Verger R, Mieras MCE, de Haas GH. Action of phospholipase A at interfaces. J Biol Chem. 1973;248(11):4023–34.

    PubMed  CAS  Google Scholar 

  30. Panaitov I, Verger R. Enzymatic reactions at interfaces: interfacial and temporal organization of enzymatic lipolysis. In: Baszkin A, Norde W, editors. Physical chemistry of biological interfaces. New York: Marcel Dekker, Inc; 2000. p. 359–400.

    Google Scholar 

  31. Sarda L, Desnuelle P. Action de la lipase pancréatique sur les esters en émulsion. Biochim Biophys Acta. 1958;30:513–21.

    Article  PubMed  CAS  Google Scholar 

  32. Belle V, Fournel A, Woudstra M, Ranaldi S, Prieri F, Thome V, et al. Probing the opening of the pancreatic lipase lid using site-directed spin labeling and EPR spectroscopy. Biochemistry. 2007;46:2205–14.

    Article  PubMed  CAS  Google Scholar 

  33. Verger R. Interfacial enzyme kinetics of lipolysis. Annu Rev Biophys Bioeng. 1976;5:77–117.

    Article  PubMed  CAS  Google Scholar 

  34. Entressangles B, Desnuelle P. Action of pancreatic lipase on aggregated glyceride molecules in an isotropic system. Biochim Biophys Acta. 1968;159(2):285–95.

    PubMed  CAS  Google Scholar 

  35. Antipova A, Semenova M, Belyakova L, Il’in M. On relationships between molecular structure, interaction and surface behavior in mixture: small-molecule surfactant+ protein. Colloids Surf B Biointerfaces. 2001;21(1–3):217–30.

    Article  PubMed  CAS  Google Scholar 

  36. Miller R, Fainerman V, Makievski A, Krägel J, Grigoriev D, Kazakov V, et al. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface. Adv Colloid Interface Sci. 2000;86(1–2):39–82.

    Article  PubMed  CAS  Google Scholar 

  37. Mogensen JE, Sehgal P, Otzen DE. Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry. 2005;44(5):1719–30.

    Article  PubMed  CAS  Google Scholar 

  38. Holmberg K, Jönsson B, Kronberg B, Lindman B. Surfactants and polymers in aqueous solution. Chischester: Wiley; 2002.

    Book  Google Scholar 

  39. Reynolds J, Tanford C. Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc Natl Acad Sci U S A. 1970;66(3):1002.

    Article  PubMed  CAS  Google Scholar 

  40. Otzen D, Oliveberg M. Burst-phase expansion of native protein prior to global unfolding in SDS. J Mol Biol. 2002;315(5):1231–40.

    Article  PubMed  CAS  Google Scholar 

  41. Otzen D. Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys J. 2002;83(4):2219–30.

    Article  PubMed  CAS  Google Scholar 

  42. Borgström B, Donner J. Interactions of pancreatic lipase with bile salts and dodecyl sulfate. J Lipid Res. 1976;17(5):491–7.

    PubMed  Google Scholar 

  43. Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg JP, et al. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991;351(6326):491–4.

    Article  PubMed  CAS  Google Scholar 

  44. Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry. 1992;31(5):1532–41.

    Article  PubMed  CAS  Google Scholar 

  45. Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, et al. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. 2000;39(49):15071–82.

    Article  PubMed  CAS  Google Scholar 

  46. Brzozowski AM. Crystallization of a Humicola lanuginosa lipase-inhibitor complex with the use of polyethylene glycol monomethyl ether. Acta Crystallogr D Biol Crystallogr. 1993;49(Pt 3):352–4.

    Article  PubMed  CAS  Google Scholar 

  47. Grochulski P, Bouthillier F, Kazlauskas RJ, Serreqi AN, Schrag JD, Ziomek E, et al. Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry. 1994;33(12):3494–500.

    Article  PubMed  CAS  Google Scholar 

  48. Egloff M-P, Marguet F, Buono G, Verger R, Cambillau C, van Tilbeurgh H. The 2.46 Å resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry. 1995;34(9):2751–62.

    Article  PubMed  CAS  Google Scholar 

  49. Roussel A, Canaan S, Egloff MP, Riviere M, Dupuis L, Verger R, et al. Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. J Biol Chem. 1999;274(24):16995–7002.

    Article  PubMed  CAS  Google Scholar 

  50. Roussel A, Miled N, Berti-Dupuis L, Riviere M, Spinelli S, Berna P, et al. Crystal structure of the open form of dog gastric lipase in complex with a phosphonate inhibitor. J Biol Chem. 2002;277(3):2266–74.

    Article  PubMed  CAS  Google Scholar 

  51. van Tilbeurgh H, Egloff M-P, Martinez C, Rugani N, Verger R, Cambillau C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-Ray crystallography. Nature. 1993;362(6423):814–20.

    Article  PubMed  Google Scholar 

  52. Gonzalez-Navarro H, Bano MC, Abad C. The closed/open model for lipase activation. Addressing intermediate active forms of fungal enzymes by trapping of conformers in water-restricted environments. Biochemistry. 2001;40(10):3174–83.

    Article  PubMed  CAS  Google Scholar 

  53. Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C, Fontecilla-Camps JC. Lipase activation by nonionic detergents. The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J Biol Chem. 1996;271:18007–16.

    Article  PubMed  CAS  Google Scholar 

  54. Miled N, Roussel A, Bussetta C, Berti-Dupuis L, Riviere M, Buono G, et al. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study. Biochemistry. 2003;42(40):11587–93.

    Article  PubMed  CAS  Google Scholar 

  55. Rouard M, Sari H, Nurit S, Entressangles B, Desnuelle P. Inhibition of pancreatic lipase by mixed micelles of diethyl p-nitrophenyl phosphate and the bile salts. Biochim Biophys Acta. 1978;530:227–35.

    PubMed  CAS  Google Scholar 

  56. Hermoso J, Pignol D, Penel S, Roth M, Chapus C, Fontecilla-Camps JC. Neutron crystallographic evidence of lipase-colipase complex activation by a micelle. EMBO J. 1997;16(18):5531–6.

    Article  PubMed  CAS  Google Scholar 

  57. Moreau H, Moulin A, Gargouri Y, Noël J-P, Verger R. Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry. 1991;30(4):1037–41.

    Article  PubMed  CAS  Google Scholar 

  58. Cudrey C, van Tilbeurgh H, Gargouri Y, Verger R. Inactivation of pancreatic lipases by amphiphilic reagents 5-(Dodecyldithio)-2-nitrobenzoic acid and tetrahydrolipstatin. Dependence upon partitioning between micellar and oil phases. Biochemistry. 1993;32(50):13800–8.

    Article  PubMed  CAS  Google Scholar 

  59. Tiss A, Miled N, Verger R, Gargouri Y, Abousalham A. Digestive lipases inhibition: an in vitro study. In: Müller G, editor. Lipases and phospholipases in drug development. Weinheim: Wiley-VCH; 2004. p. 155–93.

    Google Scholar 

  60. Ben Ali Y, Chahinian H, Petry S, Muller G, Carriere F, Verger R, et al. Might the kinetic behavior of hormone-sensitive lipase reflect the absence of the lid domain? Biochemistry. 2004;43(29):9298–306.

    Article  PubMed  CAS  Google Scholar 

  61. Desnuelle P, Sarda L, Ailhaud G. Inhibition de la lipase pancréatique par le diéthyl-p-nitrophényl phosphate en émulsion. Biochim Biophys Acta. 1960;37:570–1.

    Article  PubMed  CAS  Google Scholar 

  62. Gargouri Y, Chahinian H, Moreau H, Ransac S, Verger R. Inactivation of pancreatic and gastric lipases by THL and C12:0-TNB: a kinetic study with emulsified tributyrin. Biochim Biophys Acta. 1991;1085(3):322–8.

    PubMed  CAS  Google Scholar 

  63. Hadvary P, Lengsfeld H, Wolfer H. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J. 1988;256(2):357–61.

    PubMed  CAS  Google Scholar 

  64. Borgström B. Mode of action of tetrahydrolipstatin: a derivative of the naturally occurring lipase inhibitor lipstatin. Biochim Biophys Acta. 1988;962(3):308–16.

    PubMed  Google Scholar 

  65. Hogan S, Fleury A, Hadvary P, Lengsfeld H, Meier MK, Triscari J, et al. Studies on the antiobesity activity of tetrahydrolipstatin, a potent and selective inhibitor of pancreatic lipase. Int J Obes. 1987;11 Suppl 3:35–42.

    PubMed  CAS  Google Scholar 

  66. Hochuli E, Kupfer E, Maurer R, Meister W, Mercadal Y, Schmidt K. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. II. Chemistry and structure elucidation. J Antibiot (Tokyo). 1987;40(8):1086–91.

    CAS  Google Scholar 

  67. Weibel EK, Hadvary P, Hochuli E, Kupfer E, Lengsfeld H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J Antibiot (Tokyo). 1987;40(8):1081–5.

    CAS  Google Scholar 

  68. Martinez C, Nicolas A, van Tilbeurgh H, Egloff M-P, Cudrey C, Verger R, et al. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry. 1994;33(1):83–9.

    Article  PubMed  CAS  Google Scholar 

  69. Withers-Martinez C, Carriere F, Verger R, Bourgeois D, Cambillau C. A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. Structure. 1996;4(11):1363–74.

    Article  PubMed  CAS  Google Scholar 

  70. Lüthi-Peng Q, Winkler FK. Large spectral changes accompany the conformational transition of human pancreatic lipase induced by acylation with the inhibitor tetrahydrolipstatin. Eur J Biochem. 1992;205(1):383–90.

    Article  PubMed  Google Scholar 

  71. Tiss A, Carriere F, Verger R. Effects of gum arabic on lipase interfacial binding and activity. Anal Biochem. 2001;294(1):36–43.

    Article  PubMed  CAS  Google Scholar 

  72. Lookene A, Skottova N, Olivecrona G. Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat)(R). Eur J Biochem. 1994;222(2):395–403.

    Article  PubMed  CAS  Google Scholar 

  73. Tiss A, Lengsfeld H, Carrière F, Verger R. Inhibition of human pancreatic lipase by tetrahydrolipstatin: further kinetic studies showing its reversibility. J Mol Catal B Enzym. 2009;58(1–4):41–7. doi:10.1016/j.molcatb.2008.11.003.

    Article  CAS  Google Scholar 

  74. Tiss A, Ransac S, Lengsfeld H, Hadvary P, Cagna A, Verger R. Surface behaviour of bile salts and tetrahydrolipstatin at air/water and oil/water interfaces. Chem Phys Lipids. 2001;111(1):73–85.

    Article  PubMed  CAS  Google Scholar 

  75. Tiss A, Lengsfeld H, Hadvary P, Cagna A, Verger R. Transfer of orlistat through oil-water interfaces. Chem Phys Lipids. 2002;119(1–2):41–9.

    Article  PubMed  CAS  Google Scholar 

  76. Gargouri Y, Piéroni G, Lowe PA, Sarda L, Verger R. Human gastric lipase. The effect of amphiphiles. Eur J Biochem. 1986;156:305–10.

    Article  PubMed  CAS  Google Scholar 

  77. Gargouri Y, Piéroni G, Rivière C, Saunière J-F, Lowe PA, Sarda L, et al. Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. Gastroenterology. 1986;91(4):919–25.

    PubMed  CAS  Google Scholar 

  78. Bezzine S, Ferrato F, Ivanova MG, Lopez V, Verger R, Carriere F. Human pancreatic lipase: colipase dependence and interfacial binding of lid domain mutants. Biochemistry. 1999;38(17):5499–510.

    Article  PubMed  CAS  Google Scholar 

  79. Gargouri Y, Julien R, Bois AG, Verger R, Sarda L. Studies on the detergent inhibition of pancreatic lipase activity. J Lipid Res. 1983;24:1336–42.

    PubMed  CAS  Google Scholar 

  80. Wahlgren M, Arnebrant T. Protein adsorption to solid surfaces. Trends Biotechnol. 1991;9(1):201–8.

    Article  PubMed  CAS  Google Scholar 

  81. Aloulou A, Puccinelli D, De Caro A, Leblond Y, Carriere F. A comparative study on two fungal lipases from Thermomyces lanuginosus and Yarrowia lipolytica shows the combined effects of detergents and pH on lipase adsorption and activity. Biochim Biophys Acta. 2007;1771(12):1446–56.

    PubMed  CAS  Google Scholar 

  82. Chahinian H, Snabe T, Attias C, Fojan P, Petersen SB, Carriere F. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH. Biochemistry. 2006;45(3):993–1001.

    Article  PubMed  CAS  Google Scholar 

  83. Ranaldi S, Belle V, Woudstra M, Rodriguez J, Guigliarelli B, Sturgis J, et al. Lid opening and unfolding in human pancreatic lipase at low pH revealed by site-directed spin labeling EPR and FTIR spectroscopy. Biochemistry. 2009;48(3):630–8.

    Article  PubMed  CAS  Google Scholar 

  84. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  PubMed  Google Scholar 

  85. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    Article  PubMed  CAS  Google Scholar 

  86. Charman W, Porter C, Mithani S, Dressman J. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.

    Article  PubMed  CAS  Google Scholar 

  87. Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.

    Article  PubMed  CAS  Google Scholar 

  88. Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res. 1992;9(1):87–93.

    Article  PubMed  CAS  Google Scholar 

  89. Attwood D, Florence AT. Surfactant systems: their chemistry, pharmacy and biology. London: Chapman and Hall; 1983.

    Google Scholar 

  90. Strickley R. Currently marketed oral lipid-based dosage forms: drug products and excipients. In: Hauss DJ, editor. Oral lipid-based formulations: enhancing the bioavailability of poorly water soluble drugs. New York: Informa Healthcare, Inc.; 2007. p. 1–31.

    Google Scholar 

  91. Fernandez S, Jannin V, Rodier JD, Ritter N, Mahler B, Carriere F. Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol®, medium chain glycerides and PEG esters. Biochim Biophys Acta, Mol Cell Biol Lipids. 2007;1771:633–40.

    CAS  Google Scholar 

  92. Fernandez S, Rodier JD, Ritter N, Mahler B, Demarne F, Carrière F, et al. Lipolysis of the semi-solid self-emulsifying excipient Gelucire 44/14 by digestive lipases. Biochim Biophys Acta, Mol Cell Biol Lipids. 2008;1781:367–75.

    CAS  Google Scholar 

  93. Fernandez S, Chevrier S, Ritter N, Mahler B, Demarne F, Carriere F, et al. In vitro gastrointestinal lipolysis of four formulations of piroxicam and cinnarizine with the self emulsifying excipients Labrasol and Gelucire 44/14. Pharm Res. 2009;26(8):1901–10.

    Article  PubMed  CAS  Google Scholar 

  94. Christiansen A, Backensfeld T, Weitschies W. Effects of non-ionic surfactants on in vitro triglyceride digestion and their susceptibility to digestion by pancreatic enzymes. Eur J Pharm Sci. 2010;41(2):376–82.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

V. Delorme was financed by a PhD fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche. This work was supported by the CNRS and by the Agence Nationale de la Recherche Française (ANR PCV 2007–184840 PHELIN, ANR MIEN 2009–00904 FOAMY_TUB). Authors would like to thank Dr. J. Blanc for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédéric Carrière or Jean-François Cavalier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delorme, V., Dhouib, R., Canaan, S. et al. Effects of Surfactants on Lipase Structure, Activity, and Inhibition. Pharm Res 28, 1831–1842 (2011). https://doi.org/10.1007/s11095-010-0362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0362-9

KEY WORDS

Navigation