Skip to main content
Log in

Cocrystalization and Simultaneous Agglomeration Using Hot Melt Extrusion

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To explore hot melt extrusion (HME) as a scalable, solvent-free, continuous technology to design cocrystals in agglomerated form.

Methods

Cocrystal agglomerates of ibuprofen and nicotinamide in 1:1 ratio were produced using HME at different barrel temperature profiles, screw speeds, and screw configurations. Product was characterized for crystallinity by XRPD and DSC, while the morphology was determined by SEM. Dissolution rate and tabletting properties were compared with ibuprofen.

Results

Process parameters significantly affected the extent of cocrystallization which improved with temperature, applied shear and residence time. Processing above eutectic point was required for cocrystallization to occur, and it improved with mixing intensity by changing screw configuration. Product was in the form of spherical agglomerates, which showed directly compressible nature with enhanced dissolution rate compared to ibuprofen. This marks an important advantage over the conventional techniques, as it negates the need for further size modification steps.

Conclusions

A single-step, scalable, solvent-free, continuous cocrystallization and agglomeration technology was developed using HME, offering flexibility for tailoring the cocrystal purity. HME being an established technology readily addresses the regulatory demand of quality by design (QbD) and process analytical technology (PAT), offering high potential for pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DSC:

differential scanning calorimetry

HME:

hot melt extrusion

Ibu-Nic cocrystal:

ibuprofen-nicotinamide 1:1 cocrystal

NIR:

near infra red

PAT:

process analytical technology

PM:

physical mixture of ibuprofen and nicotinamide

Py:

mean yield pressure

QbD:

quality by design

SEM:

scanning electron microscopy

XRPD:

X-ray powder diffractometry

REFERENCES

  1. Trask AV, Motherwell WD, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm. 2006;320:114–23.

    Article  CAS  PubMed  Google Scholar 

  2. Aakeroy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc. 2009;131:17048–9.

    Article  CAS  PubMed  Google Scholar 

  3. Good DJ, Rodriguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9:2252–64.

    Article  CAS  Google Scholar 

  4. Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzman HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1, 4-dicarboxylic acids. J Am Chem Soc. 2003;125:8456–7.

    Article  CAS  PubMed  Google Scholar 

  5. McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006;23:1888–97.

    Article  CAS  PubMed  Google Scholar 

  6. Karki S, Friscic T, Laszlo F, Laity PR, Day GM, Jones W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009;21:3905–9.

    Article  CAS  Google Scholar 

  7. Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des. 2008;8:1575–9.

    Article  CAS  Google Scholar 

  8. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des. 2009;9:1106–23.

    Article  CAS  Google Scholar 

  9. Hickey MB, Peterson ML, Scoppettuolo LA, Morrisette SL, Vetter A, Guzmán H, et al. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm. 2007;67:112–9.

    Article  CAS  PubMed  Google Scholar 

  10. Trask AV, van de Streek J, Motherwell WDS, Jones W. Achieving polymorphic and stoichiometric diversity in cocrystal formation: importance of solid-state grinding, powder x-ray structure determination, and seeding. Cryst Growth Des. 2005;5:2233–41.

    Article  CAS  Google Scholar 

  11. Trask AV, Motherwell WDS, Jones W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des. 2005;5:1013–21.

    Article  CAS  Google Scholar 

  12. Takata N, Shiraki K, Takano R, Hayashi Y, Terada K. Cocrystal screening of stanolone and mestanolone using slurry crystallization. Cryst Growth Des. 2008;8:3032–7.

    Article  CAS  Google Scholar 

  13. Childs SL, Mougin P. Screening for solid forms by ultrasound crystallization and cocrystallization using ultrasound. WO. 2005;089375:A2.

    Google Scholar 

  14. Aher S, Dhumal RS, Mahadik KR, Paradkar AR, York P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: caffeine/maleic acid. Eur J Pharm Sci. 2010;In Press, Accepted manuscript. doi:10.1016/j.ejps.2010.08.012.

  15. Kuroda R, Imai Y, Tajima N. Generation of a co-crystal phase with novel coloristic properties via solid state grinding procedures. Chem Commun (Camb). 2002;23:2848–9.

    Article  Google Scholar 

  16. Rastogi RP, Bassi PS, Chadha SL. Mechanism of the reaction between hydrocarbons and picric acid in the solid state. J Phys Chem. 1963;67:2569–73.

    Article  CAS  Google Scholar 

  17. Rothenberg G, Downie AP, Raston CL, Scott JL. Understanding solid/solid organic reactions. J Am Chem Soc. 2001;123:8701–8.

    Article  CAS  PubMed  Google Scholar 

  18. Chadwick K, Davey R, Cross W. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. Cryst Eng Comm. 2007;9:732–4.

    CAS  Google Scholar 

  19. Shan N, Toda F, Jones W. Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem Commun. 2002;20:2372–3.

    Article  Google Scholar 

  20. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9:2950–67.

    Article  CAS  PubMed  Google Scholar 

  21. Sheikh AY, Rahim SA, Hammond RB, Roberts KJ. Scalable solution cocrystallization: case of carbamazepine-nicotinamide I. Cryst Eng Comm. 2009;11:501–9.

    CAS  Google Scholar 

  22. Mazen H, Townend N. Method of creating crystalline substances. US. 2008;0280858:A1.

    Google Scholar 

  23. Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluid. 2010;53:156–64.

    Article  CAS  Google Scholar 

  24. Paradkar AR, Kelly AL, Coates PD, York P. Method and product. WO. 2010;013035:A1.

    Google Scholar 

  25. Medina C, Daurio D, Nagapudi K, Alvarez-Nunez F. Manufacture of pharmaceutical co-crystals using twin screw extrusion: a solvent-less and scalable process. J Pharm Sci. 2010;99:1693–6.

    CAS  PubMed  Google Scholar 

  26. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33:909–26.

    Article  CAS  PubMed  Google Scholar 

  27. Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, et al. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33:1043–57.

    Article  CAS  PubMed  Google Scholar 

  28. Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN, et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des. 2008;8:1697–712.

    Article  CAS  Google Scholar 

  29. Lu E, Rodriguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm. 2008;10:665–8.

    CAS  Google Scholar 

  30. Melo TFA, Canevarolo SV. An optical device to measure in-line residence time distribution curves during extrusion. Poly Eng Sci. 2002;42:170–81.

    Article  Google Scholar 

  31. Wostheinrich K, Schmidt PC. Polymorphic changes of thiamine hydrochloride during granulation and tableting. Drug Dev Ind Pharm. 2001;27:481–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sun C, Grant D. Improved tableting properties of p-hydroxybenzoic acid by water of crystallization: a molecular insight. Pharm Res. 2004;21:382–6.

    Article  PubMed  Google Scholar 

  33. Maheshwari M, Ketkar AR, Chauhan B, Patil VB, Paradkar AR. Preparation and characterization of ibuprofen-cetyl alcohol beads by melt solidification technique: effect of variables. Int J Pharm. 2003;261:57–67.

    Article  CAS  PubMed  Google Scholar 

  34. Dhumal RS, Shimpi SL, Chauhan B, Mahadik KR, Paradkar AR. Evaluation of a drug with wax-like properties as a melt binder. Acta Pharm. 2006;56:451–61.

    CAS  PubMed  Google Scholar 

  35. Romero AJ, Grady LT, Rhodes CT. Dissolution testing of ibuprofen tablets. Drug Dev Ind Pharm. 1988;14:1549–86.

    Article  CAS  Google Scholar 

  36. Stead JA, Freeman M, John EG, Ward GT, Whiting B. Ibuprofen tablets: dissolution and bioavailability studies. Int J Pharm. 1983;14:59–72.

    Article  CAS  Google Scholar 

  37. Oberoi LM, Alexander KS, Riga AT. Study of interaction between ibuprofen and nicotinamide using differential scanning calorimetry, spectroscopy, and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients. J Pharm Sci. 2005;94:93–101.

    Article  CAS  PubMed  Google Scholar 

  38. Van Melkebeke B, Vermeulen B, Vervaet C, Remon JP. Melt granulation using a twin-screw extruder: a case study. Int J Pharm. 2006;326:89–93.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Yorkshire Concept, Proof of Concept Funding, Yorkshire Forward, UK. The authors gratefully acknowledge the technical assistance of Andy Baker, Thermo Scientific, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant Paradkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhumal, R.S., Kelly, A.L., York, P. et al. Cocrystalization and Simultaneous Agglomeration Using Hot Melt Extrusion. Pharm Res 27, 2725–2733 (2010). https://doi.org/10.1007/s11095-010-0273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0273-9

KEY WORDS

Navigation