Skip to main content

Advertisement

Log in

In Vitro and In Vivo Anticancer Activity of a Novel Nano-sized Formulation Based on Self-assembling Polymers Against Pancreatic Cancer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the in vitro and in vivo pancreatic anticancer activity of a nano-sized formulation based on novel polyallylamine grafted with 5% mole cholesteryl pendant groups (CH5-PAA).

Methods

Insoluble novel anticancer drug, Bisnaphthalimidopropyldiaaminooctane (BNIPDaoct), was loaded into CH5-PAA polymeric self-assemblies by probe sonication. Hydrodynamic diameters and polydispersity index measurements were determined by photon correlation spectroscopy. The in vitro cytotoxicity evaluation of the formulation was carried out by the sulforhodamine B dye assay with human pancreatic adenocarcinoma BxPC-3 cells, while for the in vivo study, Xenograff mice were used. In vitro apoptotic cell death from the drug formulation was confirmed by flow cytometric analysis.

Results

The aqueous polymer-drug formulation had a mean hydrodynamic size of 183 nm. The drug aqueous solubility was increased from negligible concentration to 0.3 mg mL−1. CH5-PAA polymer alone did not exhibit cytotoxicity, but the new polymer-drug formulation showed potent in vitro and in vivo anticancer activity. The mode of cell death in the in vitro study was confirmed to be apoptotic. The in vivo results revealed that the CH5-PAA alone did not have any anti-proliferative effect, but the CH5-PAA-drug formulation exhibited similar tumour reduction efficacy as the commercial drug, gemcitabine.

Conclusions

The proposed formulation shows potential as pancreatic cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Lowenfels AB, Maisonneuve P. Epidemiology and prevention of pancreatic cancer. Jpn J Clin Oncol. 2004;34:238–44.

    Article  PubMed  Google Scholar 

  2. Sarkar FH, Li Y, Wang Z, Kong D. Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir. 2009;64:489–500.

    CAS  PubMed  Google Scholar 

  3. Jemal A, Thomas A, Murray T, Thun M. Cancer statistics. Cancer J Clin. 2002;52:23–47.

    Article  Google Scholar 

  4. Sa Cunha A, Rault A, Laurent C, Adhoute X, Vendrely V, Bellannee G, et al. Surgical resection after radiochemotherapy in patients with unresectable adenocarcinoma of the pancreas. J Am Coll Surg. 2005;201(3):359–65.

    Article  PubMed  Google Scholar 

  5. Lockhart AC, Rothenberg ML, Berlin JD. Treatment for pancreatic cancer: current therapy and continued progress. Gastroenterology. 2005;128:1642–54.

    Article  CAS  PubMed  Google Scholar 

  6. Novarino I, Chiappin GF, Bertelli A, Heouaine G, Ritorto A, Addeo G, et al. Phase II study of cisplatin, gemcitabine and 5-fluorouracil in advanced pancreatic cancer. Ann Oncol. 2004;15:474–7.

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira J, Ralton L, Tavares J, Codeiro-da-Silva A, Bestwick C, McPherson A, et al. The synthesis and the in vitro cytotoxicity studies of bisnaphthalimidoproply polyamine derivatives against colon cancer cells and parasite Leishmania infantum. Bioorganic Med Chem. 2007;15:541–5.

    Article  CAS  Google Scholar 

  8. Dance A-M, Ralton L, Fuller Z, Milne L, Duthie S, Bestwick C, et al. Synthesis and biological activities of bisnaphthalimido polyamines derivatives: cytotoxicity, DNA binding, DNA damage and drug localization in breast cancer MCF 7 cells. Biochem Pharmacol. 2005;69:19–27.

    Article  CAS  PubMed  Google Scholar 

  9. Kong Thoo Lin P, Dance A-M, Bestwick C, Milne L. The biological activities of new polyamine derivatives as potential therapeutic agents. Biochem Soc Trans. 2003;31:407–10.

    Article  CAS  PubMed  Google Scholar 

  10. Ralton L, Bestwick CS, Milne L, Duthie S, Kong Thoo Lin P. The study of Bisnaphthalimidopropyl Spermidine and Spernine on DNA damage and repair within Colon Carcinoma Cells. Chem-Biol Interact. 2009;177:1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Brana MF, Ramos A. Naphthalimides as anti-cancer agents: synthesis and biological activity. Curr Med Chem Anti-Canc Agents. 2001;1:237–55.

    Article  CAS  Google Scholar 

  12. Kong Thoo Lin P, Pavlov VA. The synthesis and in vitro cytotoxic studies of novel Bis-naphthalimidopropyl polyamine derivatives. Bioorg Med Chem Lett. 2000;10:1609–12.

    Article  Google Scholar 

  13. Thompson C, Ding C, Qu X, Yang Z, Uchegbu IF, Tetley L, et al. The effect of polymer architecture on the nano self-assemblies based on novel comb-shaped amphiphilic poly(allylamine). Colloid Polym Sci. 2008;286:1511–26.

    Article  CAS  Google Scholar 

  14. Qiu L, Zheng C, Jin Y, Zhu K. Polymeric micelles as nanocarriers for drug delivery. Expert Opin Ther Pat. 2007;17:819–30.

    Article  CAS  Google Scholar 

  15. Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomaterialia. 2009;5:817–3.

    Article  CAS  PubMed  Google Scholar 

  16. Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65:259–69.

    Article  CAS  PubMed  Google Scholar 

  17. Nishiyama N, Kataoka K. Current state, achievements and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112:630–48.

    Article  CAS  PubMed  Google Scholar 

  18. Kwon G, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21:107–16.

    Article  CAS  Google Scholar 

  19. Qui L, Zheng C, Jin Y, Zhu K. Polymeric micelles as nanocarriers for drug delivery. Expert Opin Ther Pat. 2007;17:819–30.

    Article  Google Scholar 

  20. Cheng WP, Gray AI, Tetley L, Hang TLB, Schätzlein AG, Uchegbu IF. Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules. 2006;7:1509–20.

    Article  CAS  PubMed  Google Scholar 

  21. Kwon G, Kataoka K. Block Copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 1995;16:295–309.

    Article  CAS  Google Scholar 

  22. Hwang H-Y, Kim I-S, Kwon IC, Kim Y-H. Tumour targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128:23–31.

    Article  CAS  PubMed  Google Scholar 

  23. Albaaj F, Hutchison AJ. Hyperphosphataemia in renal failure: causes, consequences and current management. Drugs. 2003;63:577–96.

    Article  PubMed  Google Scholar 

  24. Boussif O, Delair T, Brua C, Veron L, Pavirani A, Kolbe HVJ. Synthesis of polyallylamine derivatives and their use as gene transfer vectors in vitro. Bioconjug Chem. 1999;10:877–83.

    Article  CAS  PubMed  Google Scholar 

  25. Chung YC, Hsieh WY, Young TH. Polycation/DNA complexes coated with oligonucleotides for gene delivery. Biomaterials. 2010;31:4194–203.

    Article  CAS  PubMed  Google Scholar 

  26. Vigl C, Leithner K, Albrecht K, Bernkop-Schnurch A. The effluc pump inhibitory properties of (thiolated) polyallylamines. J Drug Deliv Sci Technol. 2009;19:405–11.

    CAS  Google Scholar 

  27. Scaduto Jr RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76:469–77.

    Article  CAS  PubMed  Google Scholar 

  28. Nicoletti I, Migliorati G, Pagliacei MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139:271–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mignotte B, Vayssiere JL. Mitochondria and apoptosis. Eur J Biochem. 1998;252:1–15.

    Article  CAS  PubMed  Google Scholar 

  30. Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.

    CAS  PubMed  Google Scholar 

  31. von Wichert G, Seufferlein T, Adler G. Palliative treatment of pancreatic cancer. J Dig Dis. 2008;9:1–7.

    Article  Google Scholar 

  32. O’Reilly EM, Abou-Alfa GK. Cytotoxic therapy for advanced pancreatic adenocarcinoma. Semin Oncol. 2007;34:347–53.

    Article  PubMed  Google Scholar 

  33. Burris H, Rocha-Lima III C. New therapeutic directions for advanced pancreatic cancer: targeting the epidermal growth factor and vascular endothelial growth factor pathways. Oncologist. 2008;13:289–98.

    Article  CAS  PubMed  Google Scholar 

  34. Mei S, Ho AD, Mahlknecht U. Role of histone deacetylase inhibitors in the treatment of cancer. Int J Oncol. 2004;25:1509–19.

    CAS  PubMed  Google Scholar 

  35. Garcia-Morales P, Gomez-Martinez A, Carrato A, Martinez-Lacaci I, Barbera VM, Soto JL, et al. Histone deacetylase inhibitors induced caspase-independent apoptosis in human pancreatic adenocarcinoma cell lines. Mol Cancer Ther. 2005;4:1222–30.

    Article  CAS  PubMed  Google Scholar 

  36. Donadelli M, Costanzo C, Beghelli S, Scupoli MT, Dandrea M, Bonora A, et al. Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim Biophys Acta. 2007;1773:1095–106.

    Article  CAS  PubMed  Google Scholar 

  37. Bai J, Demirjian A, Sui J, Marasc W, Callery MP. Histone deacetylase trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells. Biochim Biophys Res Comm. 2006;348:1245–53.

    Article  CAS  Google Scholar 

  38. Ouaïssi M, Cabral S, Tavares J, Cordeiro da Silva A, Mathieu-Daude F, Mas E, et al. Histone deacetylase (HDAC) encoding gene expression in pancreatic cancer cell lines and cell sensitivity to HDAC inhibitors. Cancer Biol Ther. 2008;7:523–31.

    PubMed  Google Scholar 

  39. Tavares J, Ouaissi A, Kong Thoo Lin P, Loureiro I, Kaur S, Roy N, et al. Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1. ChemMedChem. 2010;5:140–7.

    Article  CAS  PubMed  Google Scholar 

  40. Chytil P, Etrych T, Konak C, Sirova M, Mrkvan T, Boucek J, et al. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release. 2008;127:121–30.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

SCL is supported by a fellowship from FCT (SFRH/BPD/37880/2007). Clare Hoskins was funded by Robert Gordon University, Research Development Initiative scheme.

Conflict of Interest

The authors do not have any conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kong Thoo Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoskins, C., Ouaissi, M., Lima, S.C. et al. In Vitro and In Vivo Anticancer Activity of a Novel Nano-sized Formulation Based on Self-assembling Polymers Against Pancreatic Cancer. Pharm Res 27, 2694–2703 (2010). https://doi.org/10.1007/s11095-010-0268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0268-6

KEY WORDS

Navigation