Skip to main content

Advertisement

Log in

Poly(ε-caprolactone)-Block-poly(ethyl Ethylene Phosphate) Micelles for Brain-Targeting Drug Delivery: In Vitro and In Vivo Valuation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The purpose of this work was to investigate the potential of poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) (PCL-PEEP) micelles for brain-targeting drug delivery.

Method

The coumarin-6-loaded PCL-PEEP micelles (CMs) were prepared and characterized. The cellular uptake of CMs was evaluated on in vitro model of brain-blood barrier (BBB), and the brain biodistribution of CMs in ICR mice was investigated.

Results

PCL-PEEP could self-assemble into 20 nm micelles in water with the critical micelle concentration (CMC) 0.51 μg/ml and high coumarin-6 encapsulation efficiency (92.5 ± 0.7%), and the micelles were stable in 10% FBS with less than 25% leakage of incorporated coumarin-6 during 24 h incubation at 37°C. The cellular uptake of CMs by BBB model was significantly higher and more efficient than coumarin-6 solution (CS) at 50 ng/ml. Compared with CS, 2.6-fold of coumarin-6 was found in the brains of CM-treated mice, and Cmax of CMs was 4.74% of injected dose/g brain. The qualitative investigation on the brain distribution of CMs indicated that CMs were prone to accumulate in hippocampus and striatum.

Conclusion

These results suggest that PCL-PEEP micelles could be a promising brain-targeting drug delivery system with low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Pardridge WM. Brain drug development and brain drug targeting. Pharm Res. 2007;24:1729–32.

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm. 2005;298:274–92.

    Article  CAS  PubMed  Google Scholar 

  3. Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24:1759–71.

    Article  CAS  PubMed  Google Scholar 

  4. Hu K, Li JW, Shen YH, Lu W, Gao XL, Zhang QZ, et al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release. 2009;134:55–61.

    Article  CAS  PubMed  Google Scholar 

  5. Huwyler J, Wu DF, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA. 1996;93:14164–9.

    Article  CAS  PubMed  Google Scholar 

  6. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res. 1999;16:1564–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ambruosi A, Yamamoto H, Kreuter J. Body distribution of polysorbate-80 and doxorubicin-loaded [14C]poly(butyl cyanoacrylate) nanoparticles after i.v. administration in rats. J Drug Target. 2005;13:535–42.

    Article  CAS  PubMed  Google Scholar 

  8. Pang ZQ, Lu W, Gao HL, Hu KL, Chen J, Zhang CL, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release. 2008;128:120–7.

    Article  CAS  PubMed  Google Scholar 

  9. Ambruosi A, Khalansky AS, Yamamoto H, Gelperina SE, Begley DJ, Kreuter J. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target. 2006;14:97–105.

    Article  CAS  PubMed  Google Scholar 

  10. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces. 2008;66:274–80.

    Article  CAS  PubMed  Google Scholar 

  11. Gao KP, Jiang XG. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm. 2006;310:213–9.

    Article  CAS  PubMed  Google Scholar 

  12. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55:403–19.

    Article  CAS  PubMed  Google Scholar 

  13. Liu LH, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29:1509–17.

    Article  CAS  PubMed  Google Scholar 

  14. Kuroda JI, Kuratsu JI, Yasunaga M, Koga Y, Saito Y, Matsumura Y. Potent antitumor effect of SN-38-incorporating polymeric micelle, NK012, against malignant glioma. Int J Cancer. 2009;124:2505–11.

    Article  CAS  PubMed  Google Scholar 

  15. Fruijtier-Polloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005;214:1–38.

    Article  PubMed  Google Scholar 

  16. Chaubal MV, Sen Gupta A, Lopina ST, Bruley DF. Polyphosphates and other phosphorus-containing polymers for drug delivery applications. Crit Rev Ther Drug Carrier Syst. 2003;20:295–315.

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Wan ACA, Xu XY, Gao SJ, Mao HQ, Leong KW, et al. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials. 2001;22:1157–69.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Z, Wang J, Mao HQ, Leong KW. Polyphosphoesters in drug and gene delivery. Adv Drug Deliv Rev. 2003;55:483–99.

    Article  CAS  PubMed  Google Scholar 

  19. Wang YC, Liu XQ, Sun TM, Xiong MH, Wang J. Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery. J Control Release. 2008;128:32–40.

    Article  CAS  PubMed  Google Scholar 

  20. Wang YC, Tang LY, Sun TM, Li CH, Xiong MH, Wang J. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(-caprolactone) as drug carriers. Biomacromolecules. 2008;9:388–95.

    Article  CAS  PubMed  Google Scholar 

  21. Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L, Adini I, et al. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol. 2008;26:799–807.

    Article  CAS  PubMed  Google Scholar 

  22. Song WJ, Du JZ, Liu NJ, Dou S, Cheng J, Wang J. Functionalized diblock copolymer of poly(epsilon-caprolactone) and polyphosphoester bearing hydroxyl pendant groups: synthesis, characterization, and self-assembly. Macromolecules. 2008;41:6935–41.

    Article  CAS  Google Scholar 

  23. Demeuse P, Kerkhofs A, Struys-Ponsar C, Knoops B, Remacle C, de Aguilar PV. Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the blood-brain barrier. J Neurosci Methods. 2002;121:21–31.

    Article  PubMed  Google Scholar 

  24. Calabria AR, Weidenfeller C, Jones AR, de Vries HE, Shusta EV. Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem. 2006;97:922–33.

    Article  CAS  PubMed  Google Scholar 

  25. Patt S, Sampaolo S, TheallierJanko A, Tschairkin I, CervosNavarro J. Angiogenesis triggered by severe chronic hypoxia displays regional differences. J Cereb Blood Flow Metab. 1997;17:801–6.

    Article  CAS  PubMed  Google Scholar 

  26. Mikhail AS, Allen C. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release. 2009;138:214–23.

    Article  CAS  PubMed  Google Scholar 

  27. Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev. 2010;62:503–17.

    Article  CAS  PubMed  Google Scholar 

  28. Yang XZ, Sun TM, Dou S, Wu J, Wang YC, Wang J. Block copolymer of polyphosphoester and poly(L-lactic acid) modified surface for enhancing osteoblast adhesion, proliferation, and function. Biomacromolecules. 2009;10:2213–20.

    Article  CAS  PubMed  Google Scholar 

  29. Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR. Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol. 2002;64:1355–74.

    Article  CAS  PubMed  Google Scholar 

  30. Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci. 2001;90:1681–98.

    Article  CAS  PubMed  Google Scholar 

  31. Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol. 1983;14:396–402.

    Article  CAS  PubMed  Google Scholar 

  32. Perriere N, Demeuse PH, Garcia E, Regina A, Debray M, Andreux JP, et al. Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem. 2005;93:279–89.

    Article  CAS  PubMed  Google Scholar 

  33. Borges N, Shi F, Azevedo I, Audus KL. Changes in brain microvessel endothelial cell monolayer permeability induced by adrenergic drugs. Eur J Pharmacol. 1994;269:243–8.

    Article  CAS  PubMed  Google Scholar 

  34. Flores-Benitez D, Ruiz-Cabrera A, Flores-Maldonado C, Shoshani L, Cereijido M, Contreras RG. Control of tight junctional sealing: role of epidermal growth factor. Am J Physiol Renal Physiol. 2007;292:F828–36.

    Article  CAS  PubMed  Google Scholar 

  35. Wang W, Dentler WL, Borchardt RT. VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Physiol Heart Circ Physiol. 2001;280:H434–40.

    CAS  PubMed  Google Scholar 

  36. Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, et al. Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res. 1999;35:155–64.

    Article  CAS  PubMed  Google Scholar 

  37. Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA. 2004;101:9833–8.

    Article  CAS  PubMed  Google Scholar 

  38. Lin JL, Huang YH, Shen YC, Huang HC, Liu PH. Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J Cereb Blood Flow Metab. 2010;30:1121–36.

    Article  CAS  PubMed  Google Scholar 

  39. Raub TJ, Kuentzel SL, Sawada GA. Permeability of bovine brain microvessel endothelial cells in vitro: barrier tightening by a factor released from astroglioma cells. Exp Cell Res. 1992;199:330–40.

    Article  CAS  PubMed  Google Scholar 

  40. Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, et al. Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol. 2006;26:109–18.

    Article  CAS  PubMed  Google Scholar 

  41. Abbruscato TJ, Davis TP. Combination of hypoxia/aglycemia compromises in vitro blood-brain barrier integrity. J Pharmacol Exp Ther. 1999;289:668–75.

    CAS  PubMed  Google Scholar 

  42. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.

    Article  CAS  PubMed  Google Scholar 

  43. Ragnarsson EGE, Schoultz I, Gullberg E, Carlsson AH, Tafazoli F, Lerm M, et al. Yersinia pseudotuberculosis induces transcytosis of nanoparticles across human intestinal villus epithelium via invasin-dependent macropinocytosis. Lab Invest. 2008;88:1215–26.

    Article  CAS  PubMed  Google Scholar 

  44. Wang ZJ, Tiruppathi C, Minshall RD, Malik AB. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano. 2009;3:4110–6.

    Article  CAS  PubMed  Google Scholar 

  45. Lorenz MR, Kohnle MV, Dass M, Walther P, Hocherl A, Ziener U, et al. Synthesis of fluorescent polyisoprene nanoparticles and their uptake into various cells. Macromol Biosci. 2008;8:711–27.

    Article  CAS  PubMed  Google Scholar 

  46. Pardridge WM. Peptide drug delivery to the brain. New York: Raven; 1991. p. 52–3.

    Google Scholar 

  47. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912–9.

    Article  PubMed  Google Scholar 

  48. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res. 1997;14:325–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002;10:317–25.

    Article  CAS  PubMed  Google Scholar 

  50. Steiniger SCJ, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer. 2004;109:759–67.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The National Basic Research Program of China (2007CB935804 and 2009CB930304), National Natural Science Foundation of China (90713035), and National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program”(No 2009ZX09501-024 and 2009ZX09103-066), and Major project of Shanghai Science and Technology Committee (08DZ1980200) are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linyin Feng or Yaping Li.

Additional information

Pengcheng Zhang and Luojuan Hu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Hu, L., Wang, Y. et al. Poly(ε-caprolactone)-Block-poly(ethyl Ethylene Phosphate) Micelles for Brain-Targeting Drug Delivery: In Vitro and In Vivo Valuation. Pharm Res 27, 2657–2669 (2010). https://doi.org/10.1007/s11095-010-0265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0265-9

KEY WORDS

Navigation