Skip to main content

Advertisement

Log in

Hyaluronic Acid/Chitosan-g-Poly(ethylene glycol) Nanoparticles for Gene Therapy: An Application for pDNA and siRNA Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To design hyaluronic acid (HA) and chitosan-g-poly(ethylene glycol) (CS-g-PEG) nanoparticles intended for a broad range of gene delivery applications.

Methods

Nanoparticles formulated at different HA/CS-g-PEG mass ratios were developed to associate either pDNA or siRNA. The physico-chemical characteristics, morphology, association efficiency and nuclease protection ability of the nanocarriers were compared for these two molecules. Their biological performance, including transfection effciency, nanoparticle cellular uptake and citotoxicity, was assesed.

Results

The resulting nanoparticles showed an adequate size (between 130 and 180 nm), and their surface charge could be modulated according to the nanoparticle composition (from +30 mV to −20 mV). All prototypes exhibited a greater association efficiency and nuclease protection for pDNA than for siRNA. However, cell culture experiments evidenced that HA/CS-g-PEG nanoparticles were effective carriers for the delivery of both, siRNA and pDNA, eliciting a biological response with minimal cytotoxicity. Moreover, experiments performed in the HEK-EGFP-Snail1 cell line showed the potential of the HA/CS-g-PEG nanoparticles to silence the expression of the Snail1 transcription factor, an important mediator in tumor progression.

Conclusions

HA/CS-g-PEG nanoparticles can be easily modulated for the delivery of different types of gene molecules, offering great potential for gene therapy applications, as evidenced by their biological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  CAS  PubMed  Google Scholar 

  2. Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457:426–33.

    Article  CAS  PubMed  Google Scholar 

  3. MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release. 1998;56:259–72.

    Article  CAS  PubMed  Google Scholar 

  4. Gao S, Chen J, Dong L, Ding Z, Yang Y-h, Zhang J. Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector. Eur J Pharm Biopharm. 2005;60:327–34.

    Article  CAS  PubMed  Google Scholar 

  5. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO, et al. RNA Interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14:476–84.

    Article  CAS  PubMed  Google Scholar 

  6. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115:216–25.

    Article  CAS  PubMed  Google Scholar 

  7. de la Fuente M, Seijo B, Alonso MJ. Novel hyaluronan-based nanocarriers for transmucosal delivery of macromolecules. Macromol Biosci. 2008;8:441–50.

    Article  PubMed  Google Scholar 

  8. de la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther. 2008;15:668–76.

    Article  PubMed  Google Scholar 

  9. de la Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci. 2008;49:2016–24.

    Article  PubMed  Google Scholar 

  10. Csaba N, Koping-Hoggard M, Fernandez-Megia E, Novoa-Carballal R, Riguera R, Alonso MJ. Ionically crosslinked chitosan nanoparticles as gene delivery systems: effect of PEGylation degree on in vitro and in vivo gene transfer. J Biomed Nanotech. 2009;5:162–71.

    Article  CAS  Google Scholar 

  11. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12:461–6.

    Article  CAS  PubMed  Google Scholar 

  12. Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32: (2004).

  13. Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA, et al. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci. 2004;117:2827–39.

    Article  CAS  PubMed  Google Scholar 

  14. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, Del Barrio MG, et al. The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  CAS  PubMed  Google Scholar 

  15. Lamarque G, Lucas JM, Viton C, Domard A. Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution: role of various structural parameters. Biomacromolecules. 2005;6:131–42.

    Article  CAS  PubMed  Google Scholar 

  16. Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconj Chem. 2005;16:1503–11.

    Article  CAS  Google Scholar 

  17. Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quiñoa E, Alonso MJ. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control Release. 2006;111:299–308.

    Article  CAS  PubMed  Google Scholar 

  18. Calvo P, Remuñan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63:125–32.

    Article  CAS  Google Scholar 

  19. Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/Histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 2004;24:306–19.

    Article  CAS  PubMed  Google Scholar 

  20. Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4:1591–613.

    Article  CAS  PubMed  Google Scholar 

  21. de la Fuente M, Seijo B, Alonso MJ. Design of novel polysaccharidic nanostructures for gene delivery. Nanotech. 2008;19:075105.

    Article  Google Scholar 

  22. Bloomfield VA. DNA condensation. Curr Opin Struc Biol. 1996;6:334–41.

    Article  CAS  Google Scholar 

  23. Bloomfield VA. DNA condensation by multivalent cations. Biopolymers. 1997;44:269–82.

    Article  CAS  PubMed  Google Scholar 

  24. Malek A, Czubayko F, Aigner A. PEG grafting of polyethylenimine (PEI) exerts different effects on DNA transfection and siRNA-induced gene targeting efficacy. J Drug Target. 2008;16:124–39.

    Article  CAS  PubMed  Google Scholar 

  25. Kabanov AV, Kabanov VA. DNA complexes with polycations for the delivery of genetic material into cells. Bioconj Chem. 1995;6:7–20.

    Article  CAS  Google Scholar 

  26. Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121:64–73.

    Article  CAS  PubMed  Google Scholar 

  27. Bartlett DW, Davis ME. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconj Chem. 2007;18:456–68.

    Article  CAS  Google Scholar 

  28. Banan M, Puri N. The ins and outs of RNAi in mammalian cells. Curr Pharm Biotech. 2004;5:441–50.

    Article  CAS  Google Scholar 

  29. Kabanov AV, Astafyeva IV, Chikindas ML, Rosenblat GF, Kiselev VI, Severin ES, et al. DNA interpolyelectrolyte complexes as a tool for efficient cell transformation. Biopolymers. 1991;31:1437–43.

    Article  CAS  PubMed  Google Scholar 

  30. Csaba N, Koping-Hoggard M, Alonso MJ. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm. 2009;382:205–14.

    Article  CAS  PubMed  Google Scholar 

  31. Laurent TC, Fraser JRE. Hyaluronan. FASEB J. 1992;6:2397–404.

    CAS  PubMed  Google Scholar 

  32. Rojanarata T, Opanasopit P, Techaarpornkul S, Ngawhirunpat T, Ruktanonchai U. Chitosan-thiamine pyrophosphate as a novel carrier for siRNA delivery. Pharm Res. 2008;25:2807–14.

    Article  CAS  PubMed  Google Scholar 

  33. Plattt VM, Szoka Jr FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5:474–86.

    Article  Google Scholar 

  34. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993;9:541–73.

    Article  CAS  PubMed  Google Scholar 

  35. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  CAS  PubMed  Google Scholar 

  36. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198:11–26.

    CAS  PubMed  Google Scholar 

  37. Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132:3151–61.

    Article  CAS  PubMed  Google Scholar 

  38. Peinado H, Olmeda D, Cano A. Snail, ZEB and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  CAS  PubMed  Google Scholar 

  39. Espineda CE, Chang JH, Twiss J, Rajasekaran SA, Rajasekaran AK. Repression of Na, K-ATPase β1-subunit by the transcription factor Snail in carcinoma. Mol Biol Cell. 2004;15:1364–73.

    Article  CAS  PubMed  Google Scholar 

  40. Olmeda D, Jorda M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene. 2007;26:1862–74.

    Article  CAS  PubMed  Google Scholar 

  41. Olmeda D, Moreno-Bueno G, Flores JM, Fabra A, Portillo F, Cano A. SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res. 2007;67:11721–31.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors gratefully acknowledge valuable discussion with Dr. M. de la Fuente and support from the Ministry of Science and Technology (Spain) (Refs. SAF2004-09230-004-01 and SAF2004-C04-02). The first author also acknowledges the fellowship received from the Spanish Government (FPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Alonso.

Elecrtonic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Expression of EGFP and Snail-EGFP protein in HEK-EGFP and HEK-EGFP-Snail1 cell line by western blotting. WB on whole cell lysates from HEK-EGFP (left) and HEK-EGFP-Snail1 (right) cells was performed as previously described (20) using anti-Snail (upper panel) or anti-EGFP (middle panels). Anti-tubulin antibodies were used as a loading control. (DOC 56 kb)

Supplementary Figure 2

Comparison of EGFP expression in non treated HEK-EGFP cells or after si-Snail1 loaded HA/CS-g-PEG 1/1 nanoparticles treatment (100 nM siRNA/well). (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raviña, M., Cubillo, E., Olmeda, D. et al. Hyaluronic Acid/Chitosan-g-Poly(ethylene glycol) Nanoparticles for Gene Therapy: An Application for pDNA and siRNA Delivery. Pharm Res 27, 2544–2555 (2010). https://doi.org/10.1007/s11095-010-0263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0263-y

KEY WORDS

Navigation