Skip to main content
Log in

Antibacterial Efficacy of Inhalable Levofloxacin-Loaded Polymeric Nanoparticles Against E. coli Biofilm Cells: The Effect of Antibiotic Release Profile

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the effect of the antibiotic release profiles of levofloxacin-loaded polymeric nanoparticles on their antibacterial efficacy against E. coli biofilm cells.

Methods

Three distinct antibiotic release profiles are produced by encapsulating levofloxacin in PCL and PLGA nanoparticles by nanoprecipitation and emulsification-solvent-evaporation methods. The antibacterial efficacy is examined over six days by time-dependent biofilm susceptibility testing that takes into account the effects of the biofilm age, antibiotic exposure history, and simulated drug removal.

Results

Biofilm cells that survive the initial antibiotic exposure exhibit a higher antibiotic tolerance than fresh biofilm cells, where the lower the initial exposure, the higher the tolerance of the surviving biofilm cells. The lower antibiotic susceptibility of the surviving biofilm cells is transferred to their planktonic cell progeny, which can subsequently form new biofilm colonies having a higher antibiotic tolerance, hence exacerbating the infections. A biphasic extended release profile at an appropriate dose can inhibit the biofilm growth for four days, therefore reducing the dosing frequency. The importance of a high initial antibiotic exposure renders a slow release profile ineffective despite the same dosing amount.

Conclusions

The antibiotic release profile has an equally significant influence on the biofilm eradication rate as the antibiotic dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CFU:

colony forming unit

COPD:

chronic obstructive pulmonary disease

DCM:

dichloromethane

DPI:

dry powder inhaler

EPS:

extracellular polymeric substance

ESE:

emulsification-solvent-evaporation

LEV:

levofloxacin

MBIC:

minimum biofilm inhibitory concentration

MHB:

mueller Hinton Broth

MIC:

minimum inhibitory concentration

NP:

nanoparticles

NPC:

nanoprecipitation

OD:

optical density

PBS:

phosphate buffer saline

PCL:

poly(caprolactone)

PLGA:

poly(DL-lactide-co-glycolide)

PVA:

poly (vinyl alcohol)

REFERENCES

  1. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–22.

    Article  PubMed  CAS  Google Scholar 

  2. Pauwels PRA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet. 2004;364(9434):613–20.

    Article  PubMed  Google Scholar 

  3. O’Donnell AE. Bronchiectasis. Chest. 2008;134(4):815–23.

    Article  PubMed  Google Scholar 

  4. Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002;292(2):107–13.

    Article  PubMed  CAS  Google Scholar 

  5. Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol. 2001;183(23):6746–51.

    Article  PubMed  CAS  Google Scholar 

  6. Traini D, Young PM. Delivery of antibiotics to the respiratory tract: an update. Expert Opin Drug Deliv. 2009;6:897–905.

    Article  PubMed  CAS  Google Scholar 

  7. Labiris NRC, Holbrook AM, Chrystyn H, Macleod SM, Newhouse MT. Dry powder versus intravenous and nebulized gentamicin in cystic fibrosis and bronchiectasis—A pilot study. Am J Resp Crit Care. 1999;160(5):1711–6.

    Google Scholar 

  8. de Jesus Valle MJ, Lopez FG, Hurle AD-G, Navarro AS. Pulmonary versus Systemic Delivery of Antibiotics: Comparison of Vancomycin Dispositions in the Isolated Rat Lung. Antimicrob Agents Chemother. 2007;51(10):3771–4.

    Article  PubMed  CAS  Google Scholar 

  9. Dudley MN, Loutit J, Griffith DC. Aerosol antibiotics: considerations in pharmacological and clinical evaluation. Curr Opin Biotech. 2008;19(6):637–43.

    Article  PubMed  CAS  Google Scholar 

  10. Suk JS, Lai SK, Wang YY, Ensign LM, Zeitlin PL, Boyle MP et al. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials. 2009;30(13):2591–7.

    Article  PubMed  CAS  Google Scholar 

  11. Meers P, Neville M, Malinin V, Scotto AW, Sardaryan G, Kurumunda R et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemoth. 2008;61(4):859–68.

    Article  CAS  Google Scholar 

  12. Sanders NN, De Smedt SC, Van Rompaey E, Simoens P, De Baets F, Demeester J. Cystic fibrosis sputum—A barrier to the transport of nanospheres. Am J Resp Crit Care. 2000;162(5):1905–11.

    CAS  Google Scholar 

  13. Halwani M, Hebert S, Suntres ZE, Lafrenie RM, Azghani AO, Omri A. Bismuth-thiol incorporation enhances biological activities of liposomal tobramycin against bacterial biofilm and quorum sensing molecules production by Pseudomonas aeruginosa. Int J Pharm. 2009;373(1–2):141–6.

    Article  PubMed  CAS  Google Scholar 

  14. Chono S, Tanino T, Seki T, Morimoto K. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J Drug Target. 2006;14(8):557–66.

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs C, Muller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–94.

    Article  PubMed  CAS  Google Scholar 

  16. Ostrander KD, Bosch HW, Bondanza DM. An in-vitro assessment of a NanoCrystal (TM) beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. Eur J Pharm Biopharm. 1999;48(3):207–15.

    Article  PubMed  CAS  Google Scholar 

  17. Sung J, Padilla D, Garcia-Contreras L, VerBerkmoes J, Durbin D, Peloquin C et al. Formulation and Pharmacokinetics of Self-Assembled Rifampicin Nanoparticle Systems for Pulmonary Delivery. Pharm Res. 2009;26(8):1847–55.

    Article  PubMed  CAS  Google Scholar 

  18. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemoth. 2003;52(6):981–6.

    Article  CAS  Google Scholar 

  19. Tam JM, McConville JT, Williams RO, Johnston KP. Amorphous Cyclosporin Nanodispersions for Enhanced Pulmonary Deposition and Dissolution. J Pharm Sci. 2008;97(11):4915–33.

    Article  PubMed  CAS  Google Scholar 

  20. Hoeben BJ, Burgess DS, McConville JT, Najvar LK, Talbert RL, Peters JI et al. In vivo efficacy of aerosolized nanostructured itraconazole formulations for prevention of invasive pulmonary aspergillosis. Antimicrob Agents Ch. 2006;50(4):1552–4.

    Article  CAS  Google Scholar 

  21. Steckel H, Eskandar F, Witthohn K. The effect of formulation variables on the stability of nebulized aviscumine. Int J Pharm. 2003;257(1–2):181–94.

    Article  PubMed  CAS  Google Scholar 

  22. Moskowitz SM, Foster JM, Emerson J, Burns JL. Clinically Feasible Biofilm Susceptibility Assay for Isolates of Pseudomonas aeruginosa from Patients with Cystic Fibrosis. J Clin Microbiol. 2004;42(5):1915–22.

    Article  PubMed  CAS  Google Scholar 

  23. Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171–5.

    Article  PubMed  CAS  Google Scholar 

  24. Dorr T, Lewis K, Vulic M. SOS Response Induces Persistence to Fluoroquinolones in Escherichia coli. PLoS Genet. 2009;5(12):1–9.

    Article  CAS  Google Scholar 

  25. Owusu-Ababio G, Rogers J, Anwar H. Effectiveness of ciprofloxacin microspheres in eradicating bacterial biofilm. J Control Release. 1999;57(2):151–9.

    Article  PubMed  CAS  Google Scholar 

  26. Jeong Y-I, Na H-S, Seo D-H, Kim D-G, Lee H-C, Jang M-K et al. Ciprofloxacin-encapsulated poly(dl-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int J Pharm. 2008;352(1–2):317–23.

    Article  PubMed  CAS  Google Scholar 

  27. Misra R, Acharya S, Dilnawaz F, Sahoo SK. Sustained antibacterial activity of doxycycline-loaded poly(D, L-lactide-co-glycolide) and poly(ε-caprolactone) nanoparticles. Nanomedicine. 2009;4(5):519–30.

    Article  PubMed  CAS  Google Scholar 

  28. Fluit AC, Verhoef J, Schmitz F-J. Sentry Participants Group. Antimicrobial resistance among isolates cultured from patients hospitalized with lower respiratory tract infection in Europe. Int J Infect Dis. 2002;6(2):144–6.

    Article  PubMed  Google Scholar 

  29. Eng RH, Padberg FT, Smith SM, Tan EN, Cherubin CE. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Ch. 1991;35(9):1824–8.

    CAS  Google Scholar 

  30. Kumon H, Tomochika KI, Matunaga T, Ogawa M, Ohmori H. A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol. 1994;38(8):615–9.

    PubMed  CAS  Google Scholar 

  31. Kobayashi P. Airway biofilm disease. Int J Antimicrob Ag. 2001;17(5):351–6.

    Article  CAS  Google Scholar 

  32. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171–85.

    Article  PubMed  CAS  Google Scholar 

  33. Tiefenbacher EM, Haen E, Przybilla B, Kurz H. Photodegradation of some quinolones used as antimicrobial therapeutics. J Pharm Sci. 1994;83(4):463–7.

    Article  PubMed  CAS  Google Scholar 

  34. Harrison J, Ceri H, Yerly J, Stremick C, Hu Y, Martinuzzi R et al. The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the calgary biofilm device. Biol Proced Online. 2006;8(1):194–215.

    Article  PubMed  CAS  Google Scholar 

  35. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J Clin Microbiol. 1999;37(6):1771–6.

    PubMed  CAS  Google Scholar 

  36. Conte JJE, Golden JA, McIver M, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of high-dose levofloxacin in healthy volunteer subjects. Int J Antimicrob Ag. 2006;28(2):114–21.

    Article  CAS  Google Scholar 

  37. Rebuck JA, Fish DN, Abraham E. Pharmacokinetics of intravenous and oral levofloxacin in critically ill adults in a medical intensive care unit. Pharmacotherapy. 2002;22(10):1216–25.

    Article  PubMed  CAS  Google Scholar 

  38. Keren I, Kaldalu N, Spoering A, Wang YP, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 2004;230(1):13–8.

    Article  PubMed  CAS  Google Scholar 

  39. Anwar H, Strap JL, Costerton JW. Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Ch. 1992;36(7):1347–51.

    CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Financial support from Nanyang Technological University’s Start-Up Grant (Grant No. SUG 8/07) is gratefully acknowledged. The authors would like to thank Dr. Qi Xiaobao for his contributions in the antibiotic susceptibility testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunn Hadinoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheow, W.S., Chang, M.W. & Hadinoto, K. Antibacterial Efficacy of Inhalable Levofloxacin-Loaded Polymeric Nanoparticles Against E. coli Biofilm Cells: The Effect of Antibiotic Release Profile. Pharm Res 27, 1597–1609 (2010). https://doi.org/10.1007/s11095-010-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0142-6

KEY WORDS

Navigation