Skip to main content
Log in

Inhalable Antibiotic Delivery Using a Dry Powder Co-delivering Recombinant Deoxyribonuclease and Ciprofloxacin for Treatment of Cystic Fibrosis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To achieve efficient antibiotic delivery to the cystic fibrosis (CF) airway using a single inhalable powder co-encapsulating a mucolytic and an antibiotic.

Methods

Inhalable dry powders containing deoxyribonuclease and/or ciprofloxacin (DNase, Cipro, and DNase/Cipro powders) were produced by spray-drying with dipalmitylphosphatidylcholine, albumin, and lactose as excipients, and their antibacterial effects were evaluated using the artificial sputum model.

Results

All powders showed mass median aerodynamic diameters below 5 µm. Both drugs were loaded in the dry powders without loss in quantity and activity. Dry powders containing DNase significantly decreased the storage modulus of the artificial sputum medium in less than 30 min. When applied to artificial sputum laden with Pseudomonas aeruginosa, Cipro/DNase powder showed better antibacterial activity than Cipro powder. The higher activity of the Cipro/DNase powder is attributable to the mucolytic activity of DNase, which promotes penetration of the dry powder into the artificial sputum and efficient dissolution and diffusion of ciprofloxacin.

Conclusions

Inhalational delivery of antibiotics to the CF airway can be optimized when the sputum barrier is concomitantly addressed. Co-delivery of antibiotics and DNase using an inhalable particle system may be a promising strategy for local antipseudomonal therapy in the CF airway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Orenstein DM, Rosenstein BJ, Stern RC. Diagnosis of Cystic Fibrosis. Cystic Fibrosis Medical Care. Philadelphia: Lippincott Williams and Wilkins; 2000. p. 21–53.

    Google Scholar 

  2. Genetic Testing for Cystic Fibrosis. NIH Consens Statement Online. 1997;15:1–37.

    Google Scholar 

  3. Ramsey BW. Management of pulmonary disease in patients with cystic fibrosis. New Engl J Med. 1996;335:179–88.

    Article  PubMed  CAS  Google Scholar 

  4. Murphy TM, Rosenstein BJ. Advances in the science and treatment of cystic fibrosis lung diseases: A continuing medical education resource, Duke University Medical Center & Health System, Durham, North Carolina.

  5. Sanders NN, De Smedt SC, Van Rompaey E, Simoens P, De Baets F, Demeester J. Cystic fibrosis sputum. A barrier to the transport of nanospheres. Am J Respir Crit Care Med. 2000;162:1905–11.

    PubMed  CAS  Google Scholar 

  6. Cotran RS, Kumar V, Collins T, Robbins SL. Robbins pathologic basis of disease. Philadelphia: Saunders; 1999.

    Google Scholar 

  7. Hodson ME, Gallagher CG, Govan JR. A randomised clinical trial of nebulised tobramycin or colistin in cystic fibrosis. Eur Respir J. 2002;20:658–64.

    Article  PubMed  CAS  Google Scholar 

  8. Hodson ME. Antibiotic treatment. Aerosol therapy. Chest. 1988;94:156S–62.

    PubMed  CAS  Google Scholar 

  9. Goa KL, Lamb H. Dornase alfa. A review of pharmacoeconomic and quality-of-life aspects of its use in cystic fibrosis. Pharmacoeconomics. 1997;12:409–22.

    Article  PubMed  CAS  Google Scholar 

  10. Hodson ME, McKenzie S, Harms HK, Koch C, Mastella G, Navarro J, et al. Dornase alfa in the treatment of cystic fibrosis in Europe: a report from the Epidemiologic Registry of Cystic Fibrosis. Pediatr Pulmonol. 2003;36:427–32.

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Contreras L, Hickey AJ. Pharmaceutical and biotechnological aerosols for cystic fibrosis therapy. Adv Drug Deliv Rev. 2002;54:1491–504.

    Article  PubMed  CAS  Google Scholar 

  12. Parks Q, Young R, Poch K, Malcolm K, Vasil M, Nick J. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol. 2009;58:492–502.

    Article  PubMed  CAS  Google Scholar 

  13. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16:1735.

    Article  PubMed  CAS  Google Scholar 

  14. Yu X, Zipp GL, Davidson Iii GWR. The effect of temperature and pH on the solubility of quinolone compounds: estimation of heat of fusion. Pharm Res. 1994;11:522–7.

    Article  PubMed  CAS  Google Scholar 

  15. Sinicropi D, Baker DL, Prince WS, Shiffer K, Shak S. Colorimetric determination of DNase I activity with a DNA-methyl green substrate. Anal Biochem. 1994;222:351–8.

    Article  PubMed  CAS  Google Scholar 

  16. Lichtinghagen R. Determination of Pulmozyme (dornase alpha) stability using a kinetic colorimetric DNase I activity assay. Eur J Pharm Biopharm. 2006;63:365–8.

    Article  PubMed  CAS  Google Scholar 

  17. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard—Eighth edition (M07-A8); 2009.

  18. Sriramulu DD, Lunsdorf H, Lam JS, Romling U. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol. 2005;54:667–76.

    Article  PubMed  Google Scholar 

  19. Shur J, Nevell TG, Ewen RJ, Price R, Smith A, Barbu E, et al. Cospray-dried unfractionated heparin with L-leucine as a dry powder inhaler mucolytic for cystic fibrosis therapy. J Pharm Sci. 2008;97:4857–68.

    Article  PubMed  CAS  Google Scholar 

  20. Chan HK, AuYeung KL, Gonda I. Effects of additives on heat denaturation of rhDNase in solutions. Pharm Res. 1996;13:756–61.

    Article  PubMed  CAS  Google Scholar 

  21. Cipolla DC, Gonda I, Meserve KC, Weck S, Shire SJ. Formulation and aerosol delivery of recombinant deoxyribonucleac-acid derived human deoxyribonuclease-I. In: Cleland JLLR (ed.) Symposium on Formulation and Delivery of Proteins and Peptides, at the 205th National Meeting of the American-Chemical-Society. Denver, Co; 1993. pp. 322–42.

  22. Tsifansky MD, Yeo Y, Evgenov OV, Bellas E, Benjamin J, Kohane DS. Microparticles for inhalational delivery of antipseudomonal antibiotics. AAPS J. 2008;10:254–60.

    Article  PubMed  CAS  Google Scholar 

  23. Bosquillon C, Lombry C, Preat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70:329.

    Article  PubMed  CAS  Google Scholar 

  24. Bosquillon C, Lombry C, Preat V, Vanbever R. Comparison of particle sizing techniques in the case of inhalation dry powders. J Pharm Sci. 2001;90:2032–41.

    Article  PubMed  CAS  Google Scholar 

  25. Rabbani NR, Seville PC. The influence of formulation components on the aerosolisation properties of spray-dried powders. J Control Release. 2005;110:130–40.

    Article  PubMed  CAS  Google Scholar 

  26. Madaras-Kelly KJ, Larsson AJ, Rotschafer JC. A pharmacodynamic evaluation of ciprofloxacin and ofloxacin against two strains of Pseudomonas aeruginosa. J Antimicrob Chemother. 1996;37:703–10.

    Article  PubMed  CAS  Google Scholar 

  27. Ghani M, Soothill JS. Ceftazidime, gentamicin, and rifampicin, in combination, kill biofilms of mucoid Pseudomonas aeruginosa. Can J Microbiol. 1997;43.

  28. Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev. 2009;61:115–27.

    Article  PubMed  CAS  Google Scholar 

  29. Thomas SR, Ray A, Hodson ME, Pitt TL. Increased sputum amino acid concentrations and auxotrophy of Pseudomonas aeruginosa in severe cystic fibrosis lung disease. Thorax. 2000;55:795–7.

    Article  PubMed  CAS  Google Scholar 

  30. Zahm JM, GiroddeBentzmann S, Deneuville E, Perrot-Minnot C, Dabadie A, Pennaforte F, et al. Dose-dependent in vitro effect of recombinant human DNase on rheological and transport properties of cystic fibrosis respiratory mucus. Eur Respir J. 1995;8:381–6.

    Article  PubMed  CAS  Google Scholar 

  31. Hodson ME, Geddes DM, Bush A. Cystic fibrosis. London: Hodder Arnold; 2007.

    Google Scholar 

  32. Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, et al. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun. 2005;73:3693–701.

    Article  PubMed  CAS  Google Scholar 

  33. Tomkiewicz R, Kishore C, Freeman J, Rubin B. DNA and actin filament ultrastructure in cystic fibrosis sputum. In: Baum G, Priel Z, Roth Y, Liron N, Ostield E, editors. Cilia, Mucus, and Mucociliary Interactions. New York: Marcel Dekker Inc; 1998. p. 333–41.

    Google Scholar 

  34. Sheils CA, Kas J, Travassos W, Allen PG, Janmey PA, Wohl ME, et al. Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. Am J Pathol. 1996;148:919–27.

    PubMed  CAS  Google Scholar 

  35. Broughton-Head VJ, Shur J, Carroll MP, Smith JR, Shute JK. Unfractionated heparin reduces the elasticity of sputum from patients with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2007;293:L1240–9.

    Article  PubMed  CAS  Google Scholar 

  36. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295:1487.

    Article  PubMed  CAS  Google Scholar 

  37. Prosser BL, Taylor D, Dix BA, Cleeland R. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother. 1987;31:1502–6.

    PubMed  CAS  Google Scholar 

  38. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–64.

    Article  PubMed  CAS  Google Scholar 

  39. Bates RD, Nahata MC. Aerosolized dornase alpha (rhDNase) in cystic fibrosis. J Clin Pharm Ther. 1995;20:313–5.

    Article  PubMed  CAS  Google Scholar 

  40. Ratjen F. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis. Curr Opin Pulm Med. 2006;12:428–32.

    Article  PubMed  CAS  Google Scholar 

  41. Chalumeau MM, Tonnelier SS, D’Athis PP, Trluyer JJ-M, Gendrel DD, Brart GG, et al. Fluoroquinolone safety in pediatric patients: a prospective, multicenter, comparative cohort study in France. Pediatrics. 2003;111:e714–9.

    Article  PubMed  Google Scholar 

  42. Lee CKK, Boyle MP, Diener-West M, Brass-Ernst L, Noschese M, Zeitlin PL. Levofloxacin pharmacokinetics in adult cystic fibrosis. Chest. 2007;131:796–802.

    Article  PubMed  CAS  Google Scholar 

  43. Geller DEDE. Aerosol antibiotics in cystic fibrosis. Respir Care. 2009;54:658–70.

    Article  PubMed  Google Scholar 

  44. Pearson J. Inhalation Technologies—A Breath of Fresh Air. Drug Delivery Report. 2006;19–21. Spring/Summer).

  45. Sweeney LG, Wang Z, Loebenberg R, Wong JP, Lange CF, Finlay WH. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. Int J Pharm. 2005;305:180–5.

    Article  PubMed  CAS  Google Scholar 

  46. Bosquillon C, Rouxhet PG, Ahimou F, Simon D, Culot C, Preat V, et al. Aerosolization properties, surface composition and physical state of spray-dried protein powders. J Control Release. 2004;99:357–67.

    Article  PubMed  CAS  Google Scholar 

  47. Ben-Jebria A, Chen D, Eskew ML, Vanbever R, Langer R, Edwards DA. Large porous particles for sustained protection from carbachol-induced bronchoconstriction in guinea pigs. Pharm Res. 1999;16:555–61.

    Article  PubMed  CAS  Google Scholar 

  48. Codrons V, Vanderbist F, Verbeeck RK, Arras M, Lison D, Préat V, et al. Systemic delivery of parathyroid hormone (1–34) using inhalation dry powders in rats. J Pharm Sci. 2003;92:938–50.

    Article  PubMed  CAS  Google Scholar 

  49. The United States Pharmacopeia: The National Formulary (USP32/NF27), The United States Pharmacopeial Convention, 2009.

  50. Bosquillon C, Préat V, Vanbever R. Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rats. J Control Release. 2004;96:233–44.

    Article  PubMed  CAS  Google Scholar 

  51. Weuthen T, Roeder S, Brand P, Mllinger B, Scheuch G. In vitro testing of two formoterol dry powder inhalers at different flow rates. J Aerosol Med. 2002;15:297–303.

    Article  PubMed  CAS  Google Scholar 

  52. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. PNAS. 2002;99:12001–5.

    Article  PubMed  CAS  Google Scholar 

  53. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022.

    Article  PubMed  CAS  Google Scholar 

  54. Sung JC, Padilla DJ, Garcia-Contreras L, Verberkmoes JL, Durbin D, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA. Formulation and Pharmacokinetics of Self-Assembled Rifampicin Nanoparticle Systems for Pulmonary Delivery. Pharm Res. 2009.

  55. Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–70.

    Article  PubMed  CAS  Google Scholar 

  56. Ameri M, Maa Y-F. Spray drying of biopharmaceuticals: stability and process considerations. Drying Technol. 2006;24:763–8.

    Article  CAS  Google Scholar 

  57. Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci USA. 1990;87:9188–92.

    Article  PubMed  CAS  Google Scholar 

  58. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002;184:1140–54.

    Article  PubMed  CAS  Google Scholar 

  59. Anwar H, Dasgupta M, Lam K, Costerton JW. Tobramycin resistance of mucoid Pseudomonas aeruginosa biofilm grown under iron limitation. J Antimicrob Chemother. 1989;24:647–55.

    Article  PubMed  CAS  Google Scholar 

  60. Høiby N, Johansen HK, Moser C, Song Z, Ciofu O, Kharazmi A. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect. 2001;3:23–35.

    Article  PubMed  Google Scholar 

  61. Tsifansky MD, Yeo Y, Evgenov OV, Bellas E, Benjamin J, Kohane DS. Microparticles for Inhalational Delivery of Antipseudomonal Antibiotics. AAPS J. 2008.

  62. Tré-Hardy M, Macé C, Manssouri NE, Vanderbist F, Traore H, Devleeschouwer MJ. Effect of antibiotic co-administration on young and mature biofilms of cystic fibrosis clinical isolates: the importance of the biofilm model. Int J Antimicrob Agents. 2009;33:40–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Cystic Fibrosis Foundation (Yeo), 3M Non-tenured Faculty Grant (Yeo), and the China Scholarship Council (Y. Yang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Yeo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 19 kb)

Supplementary Fig. 2

(PDF 19 kb)

Supplementary Fig. 3

(PDF 27 kb)

Supplementary Fig. 4

(PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Tsifansky, M.D., Wu, CJ. et al. Inhalable Antibiotic Delivery Using a Dry Powder Co-delivering Recombinant Deoxyribonuclease and Ciprofloxacin for Treatment of Cystic Fibrosis. Pharm Res 27, 151–160 (2010). https://doi.org/10.1007/s11095-009-9991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9991-2

KEY WORDS

Navigation