Skip to main content

Advertisement

Log in

A Quantitative Kinetic Study of Polysorbate Autoxidation: The Role of Unsaturated Fatty Acid Ester Substituents

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the role of unsaturated fatty acid ester substituents in the autoxidation of polysorbate 80 using quantitative kinetics.

Methods

Oxidation kinetics were monitored at 40°C in aqueous solution by tracking head space oxygen consumption using a fiber optic oxygen sensor with phase shift fluorescence detection. Radical chain initiation was controlled using an azo-initiator and assessed by Hammond’s inhibitor approach, allowing oxidizability constants (k p /(2k t )1/2) to be isolated. Reaction orders were determined using modified van’t Hoff plots and mixed polysorbate micelles.

Results

The oxidizability constant of polysorbate 80 ((1.07 ± 0.19) × 10−2 M−1/2 s−1/2) was found to be 2.65 times greater than polysorbate 20 ((0.404 ± 0.080) × 10−2 M−1/2 s−1/2). The additional reactivity of polysorbate 80 was isolated and was first-order in the unsaturated fatty acid ester substituents, indicating that the bulk of the autoxidative chain propagation is due to these groups. This data, and the observation of a half-order dependence on the azo-initiator, is consistent with the classical autoxidation rate law (-d[O2]/dt = k p [RH](Ri/2k t )1/2).

Conclusions

Polysorbate 80 autoxidation follows the classical rate law and is largely dependent on the unsaturated fatty acid ester substituents. Clarification of the substituents’ roles will aid formulators in the selection of appropriate polysorbates to minimize oxidative liabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azobis-2-methyl-propanimidamide, dihydrochloride

API:

Active pharmaceutical ingredient

CMC:

Critical micelle concentration

d[O2]/dt:

Rate of oxygen uptake

e :

Efficiency factor

EDTA:

Ethylenediaminetetraacetic acid

k i :

Initiation rate constant

k p :

Propagation rate constant

k p /(2k t )1/2 :

Oxidizability constant

k p1 :

Propagation rate constant for fatty acid ester substituents

k p2 :

Propagation rate constant for ethylene oxide substituents

PS-20:

Polysorbate 20, polyoxyethylene sorbitan monolaurate

PS-80:

Polysorbate 80, polyoxyethylene sorbitan monooleate

Ri :

Initiation rate

ROS:

Reactive oxygen species

Rp :

Propagation rate

Rt :

Termination rate

Trolox:

6-hydroxy-2,5,7,8-tetramethyl chroma-2-carboxylic acid

τ:

Inhibition time

2k t :

Termination rate constant

2k t1 :

Termination rate constant for fatty acid ester autoxidation

2k t2 :

Termination rate constant for ethylene oxide autoxidation

REFERENCES

  1. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97:2924–35.

    Article  PubMed  CAS  Google Scholar 

  2. Ha E, Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91:2252–64.

    Article  PubMed  CAS  Google Scholar 

  3. Nema S, Washkuhn RJ, Brendel RJ. Excipients and their use in injectable products. J Pharm Sci Technol. 1997;51:166–71.

    CAS  Google Scholar 

  4. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21:201–30.

    Article  PubMed  CAS  Google Scholar 

  5. Neervannan S. Preclinical formulations for discovery and toxicology: physicochemical challenges. Expert Opin Drug Metab Toxicol. 2006;2:714–31.

    Article  Google Scholar 

  6. Rowe RC, Sheskey PJ, Weller PJ, editors. Handbook of pharmaceutical excipients. London: Pharmaceutical Press and the American Pharmaceutical Association; 2003.

    Google Scholar 

  7. Brandner JD. The composition of Nf-defined emulsifiers: Sorbitan monolaurate, monopalmitate, monostearate, monooleate, polysorbate 20, polysorbate 40, polysorbate 60, and polysorbate 80. Drug Dev Ind Pharm. 1998;24:1949–054.

    Article  Google Scholar 

  8. Ayorinde FO, Gelain SV, James J, Johnson H, Wan LW. Analysis of some commercial polysorbate formulations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:2116–24.

    Article  PubMed  CAS  Google Scholar 

  9. Frison-Norrie S, Sporns P. Investigating the molecular heterogeneity of polysorbate emulsifiers by Maldi-Tof Ms. J Agric Food Chem. 2001;49:3335–40.

    Article  PubMed  CAS  Google Scholar 

  10. European Pharmacopoeia. On-line 5th edition: European Directorate for the Quality of Medicines and Healthcare. 2007.

  11. The United States Pharmacopeia; the National Formulary. On-line USP 31-NF 26 edition: United States Pharmacopeial Convention. 2008.

  12. Donbrow M, Azaz E, Pillersdorf A. Autoxidation of polysorbates. J Pharm Sci. 1978;67:1676–81.

    Article  PubMed  CAS  Google Scholar 

  13. Waterman KC, Adami RC, Alsante KM, Hong J, Landis MS, Lombardo F, et al. Stabilization of pharmaceuticals to oxidative degradation. Pharm Dev Technol. 2002;7:1–32.

    Article  PubMed  CAS  Google Scholar 

  14. Jaeger J, Sorensen K, Wolff SP. Peroxide accumulation in detergents. J Biochem Biophys Methods. 1994;29:77–81.

    Article  PubMed  CAS  Google Scholar 

  15. Lever M. Peroxides in detergents as interfering factors in biochemical analysis. Anal Biochem. 1977;83:274–84.

    Article  PubMed  CAS  Google Scholar 

  16. Magill A, Becker AR. Spectrophotometric method for quantitation of peroxides in Sorbitan monooleate and monostearate. J Pharm Sci. 1984;73:1663–4.

    Article  PubMed  CAS  Google Scholar 

  17. Segal R, Azaz E, Donbrow M. Peroxide removal from non-ionic surfactants. J Pharm Pharmacol. 1979;31:39–40.

    PubMed  CAS  Google Scholar 

  18. Harmon PA, Kosuda K, Nelson E, Mowery M, Reed RA. A novel peroxy radical based oxidative stressing system for ranking the oxidizability of drug substances. J Pharm Sci. 2006;95:2014–28.

    Article  PubMed  CAS  Google Scholar 

  19. Barclay LRC, Ingold KU. Autoxidation of biological molecules. 2. The autoxidation of a model membrane. A comparison of the autoxidation of egg lecithin phosphatidylcholine in water and in chlorobenzene. J Am Chem Soc. 1981;103:6478–85.

    Article  CAS  Google Scholar 

  20. Betts J. The kinetics of hydrocarbon autoxidation in the liquid phase. Quartlery Rev Chem Soc. 1971;25:265–88.

    Article  CAS  Google Scholar 

  21. Boozer CE, Hammond GS, Hamilton CE, Sen JN. Air oxidation hydrocarbons. II. The stoichiometry and fate of inhibitors in benzene and chlorobenzene. J Am Chem Soc. 1955;77:3233–7.

    Article  CAS  Google Scholar 

  22. Ingold KU. Peroxy radicals. Acc Chem Res. 1969;2:1–9.

    Article  CAS  Google Scholar 

  23. Donbrow M, Hamburger R, Azaz E, Pillersdorf A. Development of acidity in non-ionic surfactants: formic and acetic acid. The Analyst. 1978;103:400–2.

    Article  CAS  Google Scholar 

  24. Donbrow M. Stability of the polyoxyethylene chain. In: Schick MJ, editor. Nonionic surfactants: physical chemistry. New York: Marcel Dekker; 1987. p. 1060–5.

    Google Scholar 

  25. Yin H, Porter NA. New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxid Redox Signal. 2004;7:170–84.

    Article  Google Scholar 

  26. Lide DR, editor. CRC handbook of chemistry and physics. New York: CRC Press LLC; 2006–2007.

    Google Scholar 

  27. Denisov ET, Afanas’ev IB. Oxidation and antioxidants in organic chemistry and biology, edn. New York: CRC; 2005.

    Google Scholar 

  28. Steinfeld JI, Francisco JS, Hase WL. Chemical kinetics and dynamics, edn. Englewood Cliffs: Prentice Hall; 1989.

    Google Scholar 

  29. Hovorka SW, Schöneich C. Oxidative degradation of pharmaceuticals: theory, mechanisms and inhibition. J. Pharm. Sci. 2001;90.

  30. Bateman L. Olefin oxidation. Quart Revs Chem Soc. 1954;8:147–67.

    Article  CAS  Google Scholar 

  31. Helenius A, McCaslin DR, Fries E, Tanford C. Properties of detergents. Methods Enzymol. 1979;56:734–49.

    Article  PubMed  CAS  Google Scholar 

  32. Mittal KL. Determination of CMC of polysorbate 20 in aqueous solution by surface tension method. J Pharm Sci. 1972;61:1334–5.

    Article  PubMed  CAS  Google Scholar 

  33. Patist A, Bahagwat SS, Penfield KW, Aikens P, Shah DO. On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfactants Deterg. 2000;3:53–8.

    Article  CAS  Google Scholar 

  34. Barclay LRC, Locke SJ, MacNeil JM, VanKessel J, Burton GW, Ingold KU. Autoxidation of micelles and model membranes. Quantitative kinetic measurements can be made by using either water-soluble or lipid-soluble initiators with water-soluble or lipid-soluble chain-breaking antioxidants. J Am Chem Soc. 1984;106:2479–81.

    Article  CAS  Google Scholar 

  35. Dekking HGG. Propagation of vinyl polymers on clay surfaces. I. Preparation, structure, and decomposition of clay initiators. J Appl Polym Sci. 1965;9:1641–51.

    Article  CAS  Google Scholar 

  36. Barclay LRC, Ingold KU. Autoxidation of a model membrane. A comparison of the autoxidation of egg lecithin phosphatidylcholine in water and in chlorobenzene. J Am Chem Soc. 1980;102:7792–4.

    Article  CAS  Google Scholar 

  37. Howard JA, Ingold KU. Absolute rate constants for hydrocarbon autoxidation. Vi. Alkyl aromatic and olefinic hydrocarbons. Can J Chem. 1967;45:793–802.

    Article  CAS  Google Scholar 

  38. Howard JA, Ingold KU. Absolute rate constants for hydrocarbon autoxidation. XVII. The oxidation of some cyclic ethers. Can J Chem. 1969;47:3809–15.

    Article  CAS  Google Scholar 

  39. Howard JA, Ingold KU. Absolute rate constants for hydrocarbon autoxidation. XVIII. Oxidation of some acyclic ethers. Can J Chem. 1969;48:873–80.

    Article  Google Scholar 

  40. Benson SW. Thermochemical kinetics, methods for the estimation of thermochemical data and rate parameters. 2nd ed. New York: Wiley; 1976.

    Google Scholar 

  41. Ng S, Gee PT. Determination of iodine value of palm and palmkernel oil by Carbon-13 nuclear magnetic resonance spectroscopy. Eur J Lipid Sci Technol. 2001;103:223–7.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to thank Amgen Inc. for funding, Jodi Liu for discussions regarding statistical analysis of the data, and the reviewers for critical reading of this manuscript and their suggestions, especially to highlight the potential importance of linoleic and linolenic fatty acid ester substituents. J. Y. thanks Amgen Inc. for a summer graduate internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren L. Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Dokuru, D.K., Noestheden, M. et al. A Quantitative Kinetic Study of Polysorbate Autoxidation: The Role of Unsaturated Fatty Acid Ester Substituents. Pharm Res 26, 2303–2313 (2009). https://doi.org/10.1007/s11095-009-9946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9946-7

KEY WORDS

Navigation