Skip to main content
Log in

A Potential Targeting Gene Vector Based on Biotinylated Polyethyleneimine/Avidin Bioconjugates

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To improve the gene delivery efficiency and safety of non-viral vector in liver cells, avidin, which exhibited good biocompatibility and remarkable accumulation in liver, was bioconjugated with biotinylated polyethylenimine to obtain a novel gene vector.

Materials and methods

Biotinylated polyethyleneimine/avidin bioconjugate (ABP) was synthesized through grafting biotin to high molecular weight branched polyethylenimine (PEI, 25 kDa) and then bioconjugating with avidin by the biotin-avidin interaction. Physiochemical characteristics of ABP/pDNA complexes were analyzed, and in vitro cytotoxicity and transfection of ABP were also evaluated in HepG2, Hela and 293 T cells by using 25 kDa PEI as the control.

Results

It was found that ABP was able to condense pDNA efficiently at N/P ratio of 4. The particle sizes of ABP/pDNA complexes were less than 220 nm, and the average surface charges were around 27 mV at the N/P ratio ranging from 2 to 60. Among three different cell lines, ABP and its DNA complexes demonstrated much lower cytotoxicity and higher transfection efficacy in HepG2 cells as compared with 25 kDa PEI.

Conclusion

ABP presented higher transfection efficacy and safety in HepG2 cells due to the biocompatibility of avidin and the specific interactions between avidin and HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.

    Article  PubMed  Google Scholar 

  2. Follenzi A, Gupta S. The promise of lentiviral gene therapy for liver cancer. J Hepatol. 2004;40:337–40.

    Article  PubMed  Google Scholar 

  3. Willhauck MJ, Sharif SBR, Klutz K, Cengic N, Wolf I, Mohr L, et al. α-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma. Gene Ther. 2007;15:214–23.

    Article  PubMed  Google Scholar 

  4. Sangro B, Herraiz M, Prieto J. Gene therapy of neoplastic liver diseases. Int J Biochem Cell Biol. 2003;35:135–48.

    Article  PubMed  CAS  Google Scholar 

  5. Schmitz V, Qian C, Ruiz J, Sangro B, Melero I, Mazzolini G. Gene therapy for liver diseases: recent strategies for treatment of viral hepatitis and liver malignancies. Gut. 2002;50:130–5.

    Article  PubMed  CAS  Google Scholar 

  6. Jiang HL, Kwon JT, Kim YK, Kim EM, Arote R, Jeong HJ, et al. Galactosylated chitosan-graft-polyethylenimine as a gene carrier for hepatocyte targeting. Gene Ther. 2007;14:1389–98.

    Article  PubMed  CAS  Google Scholar 

  7. Varga CM, Tedford NC, Thomas M, Klibanov AM, Griffith LG, Lauffenburger DA. Quantitative comparison of polyethylenimine. formulations and adenoviral vectors in terms of intracellular gene delivery processes. Gene Ther. 2005;12:1023–32.

    Article  PubMed  CAS  Google Scholar 

  8. Liu L, Zern MA, Lizarzaburu ME, Nantz MH, Wu J. Poly (cationic lipid)-mediated in vivo gene delivery to mouse liver. Gene Ther. 2003;10:180–7.

    Article  PubMed  CAS  Google Scholar 

  9. Li S, Huang L. Nonviral gene therapy: promises and challenges. Gene Ther. 2000;7:31–4.

    Article  PubMed  CAS  Google Scholar 

  10. Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002;9:1647–52.

    Article  PubMed  CAS  Google Scholar 

  11. Kaneda Y, Tabata Y. Non-viral vectors for cancer therapy. Cancer Sci. 2006;97:348–54.

    Article  PubMed  CAS  Google Scholar 

  12. Bajaj A, Kondiah P, Bhattacharya S. Design, synthesis, and in vitro gene delivery efficacies of novel cholesterol-based gemini cationic lipids and their serum compatibility: a structure-activity investigation. J Med Chem. 2007;50:2432–42.

    Article  PubMed  CAS  Google Scholar 

  13. Bhattacharya S, Bajaj A. Fluorescence and thermotropic studies of the interactions of PEI-cholesterol based PEI-chol lipopolymers with dipalmitoyl phosphatidylcholine membranes. Biochim Biophys Acta Biomembranes. 2008;1778:2225–33.

    Article  CAS  Google Scholar 

  14. Ahn HH, Lee JH, Kim KS, Lee JY, Kim MS, Khang G, et al. Polyethyleneimine-mediated gene delivery into human adipose derived stem cells. Biomaterials. 2008;29:2415–22.

    Article  PubMed  CAS  Google Scholar 

  15. Ahn CH, Chae SY, Bae YH, Kim SW. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J Control Release. 2002;80:273–82.

    Article  PubMed  CAS  Google Scholar 

  16. Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60:149–60.

    Article  PubMed  CAS  Google Scholar 

  17. Lungwitz U, Breunig M, Blunk T, Gopferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60:247–66.

    Article  PubMed  CAS  Google Scholar 

  18. Wightman L, Kircheis R, Rossler V, Carotta S, Ruzicka R, Kursa M, et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med. 2001;3:362–72.

    Article  PubMed  CAS  Google Scholar 

  19. Liang B, He ML, Xiao ZP, Li Y, Chan CY, Kung HF, et al. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem Biophys Res Commun. 2008;367:874–80.

    Article  PubMed  CAS  Google Scholar 

  20. Wall DA, Hubbard AL. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments. J Cell Biol. 1998;101:2104–12.

    Article  Google Scholar 

  21. Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22:225–50.

    Article  PubMed  CAS  Google Scholar 

  22. Benns JM, Mahato RI, Kim SW. Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine. J Control Release. 2002;79:255–69.

    Article  PubMed  CAS  Google Scholar 

  23. Shigeta K, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, et al. Novel histidine-conjugated galactosylated cationic liposomes for efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. J Control Release. 2007;118:262–70.

    Article  PubMed  CAS  Google Scholar 

  24. Elfinger M, Maucksch C, Rudolph C. Characterization of lactoferrin as a targeting ligand for nonviral gene delivery to airway epithelial cells. Biomaterials. 2007;28:3448–55.

    Article  PubMed  CAS  Google Scholar 

  25. Sun YX, Zeng X, Meng QF, Zhang XZ, Cheng SX, Zhuo RX. The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes. Biomaterials. 2008;29:4356–65.

    Article  PubMed  CAS  Google Scholar 

  26. Laitinen OH, Nordlund HR, Hytonen VP, Kulomaa MS. Brave new (strept) avidins in biotechnology. Trends Biotechnol. 2007;25:269–77.

    Article  PubMed  CAS  Google Scholar 

  27. Mamede M, Saga T, Ishimori T, Higashi T, Sato N, Kobayashi H, et al. Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin-dendrimer complex. J Control Release. 2004;95:133–41.

    Article  PubMed  CAS  Google Scholar 

  28. Sakahara H, Saga T. Avidin-biotin system for delivery of diagnostic agents. Adv Drug Deliv Rev. 1999;37:89–101.

    Article  PubMed  CAS  Google Scholar 

  29. Huang H, Oizumi S, Kojima N, Niino T, Sakai Y. Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials. 2007;28:3815–23.

    Article  PubMed  CAS  Google Scholar 

  30. Kim MS, Seo KS, Khang G, Lee HB. First preparation of biotinylated gradient polyethylene surface to bind photoactive caged streptavidin. Langmuir. 2005;21:4066–70.

    Article  PubMed  CAS  Google Scholar 

  31. DeLange RJ. Egg white avidin. I. Amino acid composition; sequence of the amino- and carboxyl-terminal cyanogen bromide peptides. J Biol Chem. 1970;245:907–16.

    PubMed  CAS  Google Scholar 

  32. Schechter B, Silberman R, Arnon R, Wilchek M. Tissue distribution of avidin and streptavidin injected to mice. Eur J Biochem. 1990;189:327–31.

    Article  PubMed  CAS  Google Scholar 

  33. Chen L, Schechter B, Arnon R, Wilchek M. Tissue selective affinity targeting using the avidin-biotin system. Drug Develop Res. 2000;50:258–71.

    Article  CAS  Google Scholar 

  34. Fumoto S, Kawakami S, Ito Y, Shigeta K, Yamashita F, Hashida M. Enhanced hepatocyte-selective in vivo gene expression by stabilized galactosylated liposome/plasmid DNA complex using sodium chloride for complex formation. Mol Ther. 2004;10:719–29.

    Article  PubMed  CAS  Google Scholar 

  35. Benns JM, Choi JS, Mahato RI, Park JS, Kim SW. pH-sensitive cationic polymer gene delivery vehicle: N-ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem. 2000;11:637–45.

    Article  PubMed  CAS  Google Scholar 

  36. Bajaj A, Kondaiah P, Bhattacharya S. Synthesis and gene transfection efficacies of PEI-Cholesterol-based lipopolymers. Bioconjugate Chem. 2008;19:1640–51.

    Article  CAS  Google Scholar 

  37. Khandare J, Kolhe P, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Synthesis, cellular transport, and activity of polyamidoamine dendrimer-methylprednisolone conjugates. Bioconjug Chem. 2005;16:330–7.

    Article  PubMed  CAS  Google Scholar 

  38. Xu DM, Yao SD, Liu YB, Sheng KL, Hong J, Gong PJ, et al. Size-dependent properties of M-PEIs nanogels for gene delivery in cancer cells. Int J Pharm. 2007;338:291–96.

    Article  PubMed  CAS  Google Scholar 

  39. Hattori Y, Maitani Y. Low-molecular-weight polyethylenimine enhanced gene transfer by cationic cholesterol-based nanoparticle vector. Biol Pharm Bull. 2007;30:1773–8.

    Article  PubMed  CAS  Google Scholar 

  40. Putnam D, Gentry CA, Pack DW, Langer R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA. 2001;98:1200–5.

    Article  PubMed  CAS  Google Scholar 

  41. Clamme JP, Azoulay J, Mely Y. Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys J. 2003;84:1960–8.

    Article  PubMed  CAS  Google Scholar 

  42. Wojda U, Miller JL. Targeted transfer of polyethylenimine-avidin-DNA bioconjugates to hematopoietic cells using biotinylated monoclonal antibodies. J Pharm Sci. 2000;89:674–81.

    Article  PubMed  CAS  Google Scholar 

  43. Wojda U, Goldsmith P, Miller JL. Surface membrane biotinylation efficiently mediates the endocytosis of avidin bioconjugates into nucleated cells. Bioconjug Chem. 1999;10:1044–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Acknowledgement is made to National Natural Science Foundation of China (50633020), National Key Basic Research Program of China (2005CB623903) and Ministry of Education of China (Cultivation Fund of Key Scientific and Technical Innovation, Project 707043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Zheng Zhang or Ren-Xi Zhuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Sun, YX., Zhang, XZ. et al. A Potential Targeting Gene Vector Based on Biotinylated Polyethyleneimine/Avidin Bioconjugates. Pharm Res 26, 1931–1941 (2009). https://doi.org/10.1007/s11095-009-9920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9920-4

Key Words

Navigation