Skip to main content

Advertisement

Log in

Drug Delivery to the Skin From Sub-micron Polymeric Particle Formulations: Influence of Particle Size and Polymer Hydrophobicity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the influence of particle size and polymer properties on the topical delivery of a lipophilic “active” species (Nile Red (NR)) from sub-micron polymeric particles.

Methods

Three poly-(ε-caprolactone) (CAPA) formulations were examined to assess the impact of particle size. Three other formulations, based on cellulose acetate butyrate (CAB), CAPA and polystyrene were studied to address the role of polymer hydrophobicity. In vitro skin permeation, and confocal microscopy and stratum corneum (SC) tape-stripping were used to evaluate the cutaneous disposition of NR.

Results

NR delivery into the SC was greater from the larger particles, the overall smaller surface area of which enhanced the “leaving tendency” of the lipophilic “active”. Skin uptake of NR (measured as “%payload released”) from polystyrene, CAPA and CAB particles increased with decreasing polymer hydrophobicity (polystyrene > CAPA > CAB) as expected. Confocal microscopy revealed that NR released from the particles accumulated in, and penetrated via, lipid domains between the SC corneocytes. The particles showed affinity for hairs, and concentrated on the skin surface at the follicular openings.

Conclusions

Delivery of a model drug to the skin from sub-micron polymeric particle formulations is sensitive to the particle size and the relative hydrophobicity of the carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CAB:

cellulose acetate butyrate

CAPA:

poly-(ε-caprolactone)

LSCM:

laser scanning confocal microscopy

NR:

Nile Red

PI:

polydispersity index

PS:

polystyrene

SC:

stratum corneum

TEWL:

transepidermal water loss

REFERENCES

  1. Magdassi S. Delivery systems in cosmetics. Colloids Surf, A: Physicochem Eng Aspects. 1997;123-124:671–9. doi:10.1016/S0927-7757(97)03792-8.

    CAS  Google Scholar 

  2. Luppi B, Cerchiara T, Bigucci F, Basile R, Zecchi V. Polymeric nanoparticles composed of fatty acids and polyvinylalcohol for topical application of sunscreens. J Pharm Pharmacol. 2004;56:407–11. doi:10.1211/0022357022926.

    Article  PubMed  CAS  Google Scholar 

  3. Kaur IP, Agrawal R. Nanotechnology: a new paradigm in cosmeceuticals. Recent Pat Drug Deliv Formul. 2007;1:171–82. doi:10.2174/187221107780831888.

    Article  PubMed  CAS  Google Scholar 

  4. Shefer A, Shefer S. Controlled delivery system for hair care products. U.S. patent 6,491,902.

  5. Soane DS, Linford MR. Nanoscopic hair care products. U.S. patent 6,821,509.

  6. Quellet C, Hotz J, Balmer M. Polymeric nanoparticles including olfactive components. U.S. patent 7,205,340.

  7. Alvarez-Roman R, Barre G, Guy RH, Fessi H. Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection. Eur J Pharm Biopharm. 2001;52:191–5. doi:10.1016/S0939-6411(01)00188-6.

    Article  PubMed  CAS  Google Scholar 

  8. Wertz PW, Downing DT. Stratum corneum: biological and biochemical considerations. In: Hadgraft J, Guy RH, editors. Transdermal drug delivery. New York: Marcel Dekker, Inc; 1989. p. 1–22.

    Google Scholar 

  9. Downing DT, Stewart ME, Wertz PW, Colton SW, Abraham W, Strauss JS. Skin lipids: an update. J Invest Dermatol. 1987;88:2s–6s. doi:10.1111/1523-1747.ep12468850.

    Article  PubMed  CAS  Google Scholar 

  10. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–9. doi:10.1023/A:1015810312465.

    Article  PubMed  CAS  Google Scholar 

  11. Chernysheva YV, Babak VG, Kildeeva NR, Boury F, Benoit JP, Ubrich N, et al. Effect of the type of hydrophobic polymers on the size of nanoparticles obtained by emulsification - solvent evaporation. Mendeleev Commun. 2003;13:65–7. doi:10.1070/MC2003v013n02ABEH001690.

    Article  Google Scholar 

  12. Kalia YN, Pirot F, Guy RH. Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophys J. 1996;71:2692–700. doi:10.1016/S0006-3495(96)79460-2.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson RL, Cassidy JM. Variation in physical dimensions and chemical composition of human stratum corneum. J Invest Dermatol. 1973;61:30–2. doi:10.1111/1523-1747.ep12674117.

    Article  PubMed  CAS  Google Scholar 

  14. Kalia YN, Alberti I, Sekkat N, Curdy C, Naik A, Guy RH. Normalization of stratum corneum barrier function and transepidermal water loss in vivo. Pharm Res. 2000;17:1148–50. doi:10.1023/A:1026474200575.

    Article  PubMed  CAS  Google Scholar 

  15. Kalia YN, Alberti I, Naik A, Guy RH. Assessment of topical bioavailability in vivo: the importance of stratum corneum thickness. Skin Pharmacol Appl Skin Physiol. 2001;14(Suppl 1):82–6. doi:10.1159/000056394.

    PubMed  CAS  Google Scholar 

  16. Jenning V, Gysler A, Schafer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm. 2000;49:211–8. doi:10.1016/S0939-6411(99)00075-2.

    Article  PubMed  CAS  Google Scholar 

  17. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99:53–62. doi:10.1016/j.jconrel.2004.06.015.

    Article  PubMed  CAS  Google Scholar 

  18. Shotton DM. Confocal scanning optical microscopy and its application for biological specimens. J Cell Sci. 1989;94:175–206.

    Google Scholar 

  19. Christophers E. Cellular architecture of the stratum corneum. J Invest Dermatol. 1971;56:165–9. doi:10.1111/1523-1747.ep12260765.

    Article  PubMed  CAS  Google Scholar 

  20. Mackenzie JC. Ordered structure of the stratum corneum of mammalian skin. Nature. 1969;222:881–2. doi:10.1038/222881a0.

    Article  PubMed  CAS  Google Scholar 

  21. Hoogstraate AJ, Cullander C, Nagelkerke JF, Spies F, Verhoef J, Schrijvers AHGJ, et al. A novel in-situ model for continuous observation of transient drug concentration gradients across buccal epithelium at the microscopical level. J Control Release. 1996;39:71–8. doi:10.1016/0168-3659(95)00140-9.

    Article  CAS  Google Scholar 

  22. Laurent M, Johannin G, Gillbert N, Lucas L, Cassio D, Petit PX, et al. Power and limits of laser scanning confocal microscopy. Biol Cell. 1994;80:229–40. doi:10.1016/0248-4900(94)90046-9.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Supported by the European Commission 6th Research and Technological Development Framework Programme (NAPOLEON: NAnostructured waterborne POLymEr films with OutstaNding properties) and a University Research Scholarship for Xiao Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Biatry, B., Cazeneuve, C. et al. Drug Delivery to the Skin From Sub-micron Polymeric Particle Formulations: Influence of Particle Size and Polymer Hydrophobicity. Pharm Res 26, 1995–2001 (2009). https://doi.org/10.1007/s11095-009-9915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9915-1

KEY WORDS

Navigation