T. M. Allen and P. R. Cullis. Drug delivery systems: entering the mainstream. Science. 303:1818–1822 (2004). doi:10.1126/science.1095833.
PubMed
CAS
Article
Google Scholar
D. J. Crommelin, G. Storm, W. Jiskoot, R. Stenekes, E. Mastrobattista, and W. E. Hennink. Nanotechnological approaches for the delivery of macromolecules. J. Control Release. 87:81–88 (2003). doi:10.1016/S0168-3659(03)00014-2.
PubMed
CAS
Article
Google Scholar
T. Lammers, W. E. Hennink, and G. Storm. Tumour-targeted nanomedicines: principles and practice. Br. J. Cancer. 99:392–397 (2008). doi:10.1038/sj.bjc.6604483.
PubMed
CAS
Article
Google Scholar
E. Mastrobattista, M. A. van der Aa, W. E. Hennink, and D. J. Crommelin. Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discov. 5:115–121 (2006). doi:10.1038/nrd1960.
PubMed
Article
Google Scholar
A. Prokop and J. M. Davidson. Nanovehicular intracellular delivery systems. J. Pharm. Sci. 97:3518–3590 (2008). doi:10.1002/jps.21270.
PubMed
CAS
Article
Google Scholar
R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, and T. M. Aminabhavi. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control Release. 125:193–209 (2008). doi:10.1016/j.jconrel.2007.09.013.
PubMed
CAS
Article
Google Scholar
S. M. Moghimi and I. Hamad. Liposome-mediated triggering of complement cascade. J. Liposome Res. 18:195–209 (2008). doi:10.1080/08982100802309552.
PubMed
CAS
Article
Google Scholar
T. Lian and R. J. Ho. Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 90:667–680 (2001). doi:10.1002/jps.1023.
PubMed
CAS
Article
Google Scholar
D. J. Crommelin and G. Storm. Liposomes: from the bench to the bed. J. Liposome Res. 13:33–36 (2003). doi:10.1081/LPR-120017488.
PubMed
Article
Google Scholar
M. Jelinkova, J. Strohalm, T. Etrych, K. Ulbrich, and B. Rihova. Starlike vs. classic macromolecular prodrugs: two different antibody-targeted HPMA copolymers of doxorubicin studied in vitro and in vivo as potential anticancer drugs. Pharm. Res. 20:1558–1564 (2003). doi:10.1023/A:1026170830782.
PubMed
CAS
Article
Google Scholar
B. Rihova, J. Strohalm, M. Kovar, T. Mrkvan, V. Subr, O. Hovorka, M. Sirova, L. Rozprimova, K. Kubackova, and K. Ulbrich. Induction of systemic antitumour resistance with targeted polymers. Scand. J. Immunol. 62(Suppl 1):100–105 (2005). doi:10.1111/j.1365-3083.2005.01617.x.
PubMed
CAS
Article
Google Scholar
D. T. O’Hagan and N. M. Valiante. Recent advances in the discovery and delivery of vaccine adjuvants. Nat. Rev. Drug Discov. 2:727–735 (2003). doi:10.1038/nrd1176.
PubMed
CAS
Article
Google Scholar
D. T. O’Hagan and R. Rappuoli. Novel approaches to vaccine delivery. Pharm. Res. 21:1519–1530 (2004). doi:10.1023/B:PHAM.0000041443.17935.33.
PubMed
CAS
Article
Google Scholar
M. Singh, A. Chakrapani, and D. O’Hagan. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev. Vaccines. 6:797–808 (2007). doi:10.1586/14760584.6.5.797.
PubMed
CAS
Article
Google Scholar
C. E. Astete and C. M. Sabiov. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17:247–289 (2006). doi:10.1163/156856206775997322.
PubMed
CAS
Article
Google Scholar
T. M. Fahmy, P. M. Fong, J. Park, T. Constable, and W. M. Saltzman. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS Journal. 9:E171–E180 (2007). doi:10.1208/aapsj0902019.
PubMed
Article
Google Scholar
J. Kopeček, P. Kopečková, T. Minko, and Z.-R. Lu. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm. 50:61–81 (2000). doi:10.1016/S0939-6411(00)00075-8.
PubMed
Article
Google Scholar
F. Alexis, E. Pridgen, L. K. Molnar, and O. C. Farokhzad. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmacol. 5:505–515 (2008). doi:10.1021/mp800051m.
CAS
Article
Google Scholar
M. A. Dobrovolskaia, P. Aggarwal, J. B. Hall, and S. E. McNeil. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharmacol. 5:487–495 (2008). doi:10.1021/mp800032f.
CAS
Article
Google Scholar
M. A. Dobrovolskaia and S. E. McNeil. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2:469–478 (2007). doi:10.1038/nnano.2007.223.
PubMed
CAS
Article
Google Scholar
S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53:283–318 (2001).
PubMed
CAS
Google Scholar
B. Romberg, W. E. Hennink, and G. Storm. Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25:55–71 (2008). doi:10.1007/s11095-007-9348-7.
PubMed
CAS
Article
Google Scholar
C. R. Alving. Antibodies to lipids and liposomes: immunology and safety. J. Liposome Res. 16:157–166 (2006). doi:10.1080/08982100600848553.
PubMed
CAS
Article
Google Scholar
C. R. Alving, G. M. Swartz Jr., N. M. Wassef, J. L. Ribas, E. E. Herderick, R. Virmani, F. D. Kolodgie, G. R. Matyas, and J. F. Cornhill. Immunization with cholesterol-rich liposomes induces anti-cholesterol antibodies and reduces diet-induced hypercholesterolemia and plaque formation. J. Lab. Clin. Med. 127:40–49 (1996). doi:10.1016/S0022-2143(96)90164-X.
PubMed
CAS
Article
Google Scholar
B. G. Schuster, M. Neidig, B. M. Alving, and C. R. Alving. Production of antibodies against phosphocholine, phosphatidylcholine, sphingomyelin, and lipid A by injection of liposomes containing lipid A. J. Immunol. 122:900–905 (1979).
PubMed
CAS
Google Scholar
G. M. Swartz Jr., M. K. Gentry, L. M. Amende, E. J. Blanchette-Mackie, and C. R. Alving. Antibodies to cholesterol. Proc. Natl. Acad Sci. U. S. A. 85:1902–1906 (1988). doi:10.1073/pnas.85.6.1902.
PubMed
CAS
Article
Google Scholar
C. R. Alving and G. M. Swartz Jr. Antibodies to cholesterol, cholesterol conjugates and liposomes: implications for atherosclerosis and autoimmunity. Crit. Rev. Immunol. 10:441–453 (1991).
PubMed
CAS
Google Scholar
C. R. Alving, N. M. Wassef, and M. Potter. Antibodies to cholesterol: biological implications of antibodies to lipids. Curr. Top. Microbiol. Immunol. 210:181–186 (1996).
PubMed
CAS
Google Scholar
B. Banerji and C. R. Alving. Anti-liposome antibodies induced by lipid A. J. Immunol. 1216:1080–1084 (1981).
Google Scholar
N. Karasavvas, Z. Beck, J. Tong, G. R. Matyas, M. Rao, F. E. McCutchan, N. L. Michael, and C. R. Alving. Antibodies induced by liposomal protein exhibit dual binding to protein and lipid epitopes. Biochem. Biophys. Res. Commun. 366:982–987 (2008). doi:10.1016/j.bbrc.2007.12.057.
PubMed
CAS
Article
Google Scholar
J. Szebeni. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 216:106–121 (2005). doi:10.1016/j.tox.2005.07.023.
PubMed
CAS
Article
Google Scholar
D. E. Owens 3rd, and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 (2006). doi:10.1016/j.ijpharm.2005.10.010.
PubMed
CAS
Article
Google Scholar
T. Ishida, K. Atobe, X. Y. Wang, and H. Kiwada. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J. Control. Release. 115:251–258 (2006). doi:10.1016/j.jconrel.2006.08.017.
PubMed
CAS
Article
Google Scholar
T. Ishida, M. Ichihara, X. Y. Wang, and H. Kiwada. Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J. Control. Release. 115:243–250 (2006). doi:10.1016/j.jconrel.2006.08.001.
PubMed
CAS
Article
Google Scholar
T. Ishida, M. Ichihara, X. Y. Wang, K. Yamamoto, J. Kimura, E. Majima, and H. Kiwada. Injection of PEGylated liposomes in rats elicts PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Control. Release. 112:15–25 (2006). doi:10.1016/j.jconrel.2006.01.005.
PubMed
CAS
Article
Google Scholar
T. Ishida, X. Y. Wang, T. Shimizu, K. Nawata, and H. Kiwada. PEGylated liposomes elicit an anti-PEG IgM response in a T-cell independent manner. J. Control. Release. 122:349–355 (2007). doi:10.1016/j.jconrel.2007.05.015.
PubMed
CAS
Article
Google Scholar
S. C. Semple, T. O. Harasym, K. A. Clow, S. M. Ansell, S. K. Klimuk, and M. J. Hope. Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic Acid. J. Pharmacol. Exp. Ther. 312:1020–1026 (2005). doi:10.1124/jpet.104.078113.
PubMed
CAS
Article
Google Scholar
X. Y. Wang, T. Ishida, and H. Kiwada. Anti-PEG IgM elicted by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J. Control. Release. 119:236–244 (2007). doi:10.1016/j.jconrel.2007.02.010.
PubMed
CAS
Article
Google Scholar
K. Środa, J. Rydlewski, M. Lnagner, A. Kozubek, M. Grzybek, and A. F. Sikorski. Repeated injections of PEG-PE liposomes generate anti-PEG antibodies. Cell. Mol. Biol. Lett. 10:37–47 (2005).
PubMed
Google Scholar
Q. Vos, A. Lees, Z. Q. Wu, C. M. Snapper, and J. J. Mond. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev. 176:154–170 (2000). doi:10.1034/j.1600-065X.2000.00607.x.
PubMed
CAS
Article
Google Scholar
D. Male, J. Brostoff, D. B. Roth, and I. Roitt. Immunology. Seventh edition, Mosby-Elsevier, Philadelphia, 2006.
Google Scholar
J. K. Armstrong, G. Hempel, S. Koling, L. S. Chan, T. Fisher, H. J. Meiselman, and G. Garratty. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 110:103–111 (2007). doi:10.1002/cncr.22739.
PubMed
Article
Google Scholar
N. J. Ganson, S. J. Kelly, E. Scarlett, J. S. Sundy, and M. S. Hershfield. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res. Ther. 8:R12 (2006). doi:10.1186/ar1861.
PubMed
Article
CAS
Google Scholar
B. Rihova, K. Ulbrich, J. Kopecek, and P. Mancal. Immunogenicity of N-(2-hydroxypropyl)-methacrylamide copolymers—potential hapten or drug carriers. Folia Microbiol. (Praha). 28:217–227 (1983). doi:10.1007/BF02884085.
CAS
Article
Google Scholar
B. Říhová. Immunomodulating activities of soluble synthetic polymer-bound drugs. Adv. Drug Deliv. Rev. 54:653–674 (2002). doi:10.1016/S0169-409X(02)00043-1.
PubMed
Article
Google Scholar
P. R. Hart, P. Kopeckova, V. Omelyanenko, E. Enioutina, and J. Kopecek. HPMA copolymer-modified avidin: immune response. J. Biomater. Sci. Polym. Ed. 11:1–12 (2000). doi:10.1163/156856200743454.
PubMed
CAS
Article
Google Scholar
P. Artursson, I. L. Mårtensson, and I. Sjöholm. Biodegradable microspheres. III: some immunological properties of polyacryl starch microparticles. J. Pharm. Sci. 75:697–701 (1986). doi:10.1002/jps.2600750717.
PubMed
CAS
Article
Google Scholar
A. Klopstock, M. Pinto, and A. Rimon. Antibodies reacting with steroid haptens. J. Immunol. 92:515–519 (1964).
PubMed
CAS
Google Scholar
J. Chesham and G. E. Davies. The role of metabolism in the immunogenicity of drugs: production of antibodies to a horseradish peroxidase generated conjugate paracetamol. Clin. Exp. Immunol. 61:224–231 (1985).
PubMed
CAS
Google Scholar
H. M. Dintzis, R. Z. Dintzis, and B. Vogelstein. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl. Acad. Sci. U. S. A. 73:3671–3675 (1976). doi:10.1073/pnas.73.10.3671.
PubMed
CAS
Article
Google Scholar
R. Z. Dintzis, M. Okajima, M. H. Middleton, G. Greene, and H. M. Dintzis. The immunogenicity of soluble haptenated polymers is determined by molecular mass and hapten valence. J. Immunol. 143:1239–1244 (1989).
PubMed
CAS
Google Scholar
B. Sulzer and A. S. Perelson. Immunons revisited: binding of multivalent antigens to B cells. Mol. Immunol. 34:63–74 (1997). doi:10.1016/S0161-5890(96)00096-X.
PubMed
CAS
Article
Google Scholar
J. J. Mond, K. E. Stein, B. Subbarao, and W. E. Paul. Analysis of B cell activation requirements with TNP-conjugated polyacrylamide beads. J. Immunol. 123:239–245 (1979).
PubMed
CAS
Google Scholar
M. L. Freimer, K. McIntosh, R. A. Adams, C. R. Alving, and D. B. Drachman. Gangliosides elicit a T-cell independent antibody response. J. Autoimmun. 6:281–289 (1993). doi:10.1006/jaut.1993.1024.
PubMed
CAS
Article
Google Scholar
G. R. Matyas, N. M. Wassef, M. Rao, and C. R. Alving. Induction and detection of antibodies to squalene. J. Immunol. Methods. 245:1–14 (2000). doi:10.1016/S0022-1759(00)00268-4.
PubMed
CAS
Article
Google Scholar
J. H. Eldridge, J. K. Staas, J. A. Meulbroek, T. R. Tice, and R. M. Gilley. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immun. 59:2978–2986 (1991).
PubMed
CAS
Google Scholar
P. G. Tardi, E. N. Swartz, T. O. Harasym, P. R. Cullis, and M. B. Bally. An immune response to ovalbumin covalently coupled to liposomes is prevented when the liposomes used contain doxorubicin. J. Immunol. Methods. 210:137–148 (1997). doi:10.1016/S0022-1759(97)00178-6.
PubMed
CAS
Article
Google Scholar
S. Hermeling, D. J. A. Crommelin, H. Schellekens, and W. Jiskoot. Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res. 21:897–903 (2004). doi:10.1023/B:PHAM.0000029275.41323.a6.
PubMed
CAS
Article
Google Scholar
H. Schellekens. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 1:457–462 (2002). doi:10.1038/nrd818.
PubMed
CAS
Article
Google Scholar
K. Ramani, R. D. Miclea, V. S. Purohit, D. E. Mager, R. M. Straubinger, and S. V. Balu-Iyer. Phosphatidylserine containing liposomes reduce immunogenicity of recombinant human factor VIII (rFVIII) in a murine model of hemophilia A. J. Pharm. Sci. 97:1386–1398 (2008). doi:10.1002/jps.21102.
PubMed
CAS
Article
Google Scholar
P. R. Hoffmann, J. A. Kench, A. Vondracek, E. Kruk, D. L. Daleke, M. Jordan, P. Marrack, P. M. Henson, and V. A. Fadok. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J. Immunol. 174:1393–1404 (2005).
PubMed
CAS
Google Scholar
K. Ramani, V. Purohit, R. Miclea, P. Gaitonde, R. M. Straubinger, and S. V. Balu-Iyer. Passive transfer of polyethylene glycol to liposomal-recombinant human FVIII enhances its efficacy in a murine model for hemophilia A. J. Pharm. Sci. 97:3753–3764 (2008). doi:10.1002/jps.21266.
PubMed
CAS
Article
Google Scholar
J. M. Irache, H. H. Salman, C. Gamazo, and S. Espuelas. Mannose-targeted systems for the delivery of therapeutics. Expert Opin. Drug Deliv. 5:703–724 (2008). doi:10.1517/17425247.5.6.703.
PubMed
CAS
Article
Google Scholar
N. C. Phillips and J. Dahman. Immunogenicity of immunoliposomes: reactivity against species-specific IgG and liposomal phospholipids. Immunol. Lett. 45:149–152 (1995). doi:10.1016/0165-2478(94)00251-L.
PubMed
CAS
Article
Google Scholar
J. A. Harding, C. M. Engbers, M. S. Newman, N. I. Goldstein, and S. Zalipsky. Immunogenicity and pharmacokinetic attributes of poly (ethylene glycole)-grafted immunoliposomes. Biochim. Biophys. Acta. 1327:181–192 (1997). doi:10.1016/S0005-2736(97)00056-4.
PubMed
CAS
Article
Google Scholar
B. X. Chen, S. R. Wilson, M. Das, D. J. Coughlin, and B. F. Erlanger. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc. Natl. Acad. Sci. U. S. A. 95:10809–10813 (1998). doi:10.1073/pnas.95.18.10809.
PubMed
CAS
Article
Google Scholar
M. F. Bachmann and R. M. Zinkernagel. Neutralizing antiviral B cell responses. Annu. Rev. Immunol. 15:235–270 (1997). doi:10.1146/annurev.immunol.15.1.235.
PubMed
CAS
Article
Google Scholar
J. J. Mond, Q. Vos, A. Lees, and C. M. Snapper. T cell independent antigens. Curr. Opin. Immunol. 7:349–354 (1995). doi:10.1016/0952-7915(95)80109-X.
PubMed
CAS
Article
Google Scholar
M. F. Bachmann, H. Hengartner, and R. M. Zinkernagel. T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction? Eur. J. Immunol. 25:3445–3451 (1995). doi:10.1002/eji.1830251236.
PubMed
CAS
Article
Google Scholar
M. F. Bachmann, U. H. Rohrer, T. M. Kundig, K. Burki, H. Hengartner, and R. M. Zinkernagel. The influence of antigen organization on B cell responsiveness. Science. 262:1448–1451 (1993). doi:10.1126/science.8248784.
PubMed
CAS
Article
Google Scholar
M. F. Bachmann and R. M. Zinkernagel. The influence of virus structure on antibody responses and virus serotype formation. Immunol. Today. 17:553–558 (1996). doi:10.1016/S0167-5699(96)10066-9.
PubMed
CAS
Article
Google Scholar
B. Chackerian, P. Lenz, D. R. Lowy, and J. T. Schiller. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J. Immunol. 169:6120–6126 (2002).
PubMed
CAS
Google Scholar
B. Chackerian, D. R. Lowy, and J. T. Schiller. Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J. Clin. Invest. 108:415–423 (2001).
PubMed
CAS
Google Scholar
M. Brunswick, F. D. Finkelman, P. F. Highet, J. K. Inman, H. M. Dintzis, and J. J. Mond. Picogram quantities of anti-Ig antibodies coupled to dextran induce B cell proliferation. J. Immunol. 140:3364–3372 (1988).
PubMed
CAS
Google Scholar
L. M. Pecanha, C. M. Snapper, F. D. Finkelman, and J. J. Mond. Dextran-conjugated anti-Ig antibodies as a model for T cell-independent type 2 antigen-mediated stimulation of Ig secretion in vitro. I. Lymphokine dependence. J. Immunol. 146:833–839 (1991).
PubMed
CAS
Google Scholar
S. Akira and K. Takeda. Functions of toll-like receptors: lessons from KO mice. C. R. Biol. 327:581–589 (2004). doi:10.1016/j.crvi.2004.04.002.
PubMed
CAS
Article
Google Scholar
J. Szebeni. Complement activation-related pseudoallergy caused by amphiphilic drug carriers: the role of lipoproteins. Curr. Drug Deliv. 2:443–449 (2005). doi:10.2174/156720105774370212.
PubMed
CAS
Article
Google Scholar
J. Parkin and B. Cohen. An overview of the immune system. Lancet. 357:1777–1789 (2001). doi:10.1016/S0140-6736(00)04904-7.
PubMed
CAS
Article
Google Scholar
T. Ishida, H. Harashima, and H. Kiwada. Liposome clearance. Biosci. Rep. 22:197–224 (2002). doi:10.1023/A:1020134521778.
PubMed
CAS
Article
Google Scholar
P. Parham. The Immune System, Garland Publishing/Elsevier Science Ltd, New York, 2000.
Google Scholar
X. Yan, G. L. Scherphof, and J. A. A. M. Kamps. Liposome opsonization. J. Liposome Res. 15:109–139 (2005).
PubMed
CAS
Google Scholar
K. Funato, R. Yoda, and H. Kiwada. Contribution of complement system on destabilization of liposomes composed of hydrogenated egg phosphatidylcholine in rat fresh plasma. Biochim. Biophys. Acta. 1103:198–204 (1992). doi:10.1016/0005-2736(92)90087-3.
PubMed
CAS
Article
Google Scholar
D. L. Gordon, J. Rice, J. J. Finlay-Jones, P. J. McDonald, and M. K. Hostetter. Analysis of C3 deposition and degradation on bacterial surfaces after opsonization. J. Infect. Dis. 157:697–704 (1988).
PubMed
CAS
Google Scholar
A. J. Bradley, E. Maurer-Spurej, D. E. Brooks, and D. V. Devine. Unusual electrostatic effects on binding of C1q to anionic liposomes: Role of anionic phospholipid domains and their line tension. Biochemistry. 38:8112–8123 (1999). doi:10.1021/bi990480a.
PubMed
CAS
Article
Google Scholar
D. V. Devine and J. M. Marjan. The role of immunoproteins in the survival of liposomes in the circulation. Crit. Rev. Ther. Drug Carr. Syst. 14:105–131 (1997).
CAS
Google Scholar
J. Szebeni, N. M. Wassef, A. S. Rudolph, and C. R. Alving. Complement activation in human serum by liposome-encapsulated hemoglobin: the role of natural anti-phospholipid antibodies. Biochim. Biophys. Acta. 1285:127–130 (1996). doi:10.1016/S0005-2736(96)00201-5.
PubMed
CAS
Article
Google Scholar
C. R. Alving, R. L. Richards, and A. A. Guirguis. Cholesterol-dependent human complement activation resulting in damage to liposomal model membranes. J. Immunol. 118:342–347 (1977).
PubMed
CAS
Google Scholar
A. Chonn, P. R. Cullis, and D. V. Devine. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 146:4234–4241 (1991).
PubMed
CAS
Google Scholar
C. M. Cunningham, M. Kingzette, R. L. Richards, C. R. Alving, T. F. Lint, and H. Gewurz. Activation of human complement by liposomes: a model for membrane activation of the alernative pathway. J. Immunol. 122:1237–1242 (1979).
PubMed
CAS
Google Scholar
S. M. Moghimi, I. Hamad, T. L. Andresen, K. Jorgensen, and J. Szebeni. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J. 20:2591–2593 (2006). doi:10.1096/fj.06-6186fje.
PubMed
CAS
Article
Google Scholar
T. Kovacsovics, J. Tschopp, A. Kress, and H. Isliker. Antibody-indepent activation of C1, the first component of complement, by cardiolipin. J Immunol. 135:2695–2700 (1985).
PubMed
CAS
Google Scholar
K. Sou and E. Tsuchida. Electrostatic interactions and complement activation on the surface of phospholipid vesicle containing acidic lipids: effect of the structure of acidic groups. Biochim. Biophys. Acta. 1778:1035–1041 (2008). doi:10.1016/j.bbamem.2008.01.006.
PubMed
CAS
Article
Google Scholar
J. Szebeni, L. Baranyi, S. Savay, J. Milosevits, R. Bunger, P. Laverman, J. M. Metselaar, G. Storm, A. Chanan-Khan, L. Liebes, F. M. Muggia, R. Cohen, Y. Barenholz, and C. R. Alving. Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J. Liposome Res. 12:165–172 (2002). doi:10.1081/LPR-120004790.
PubMed
CAS
Article
Google Scholar
I. Bertholon, C. Vauthier, and D. Labarre. Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm. Res. 23:1313–1323 (2006). doi:10.1007/s11095-006-0069-0.
PubMed
CAS
Article
Google Scholar
D. W. Bartlett and M. E. Davis. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem. 18:456–468 (2007). doi:10.1021/bc0603539.
PubMed
CAS
Article
Google Scholar
S. Nagayama, K. Ogawara, Y. Fukuoka, K. Higaki, and T. Kimura. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int. J. Pharm. 342:215–221 (2007). doi:10.1016/j.ijpharm.2007.04.036.
PubMed
CAS
Article
Google Scholar
A. Vonarbourg, C. Passirani, P. Saulnier, P. Simard, J. C. Leroux, and J. P. Benoit. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J. Biomed. Mater. Res. A. 78:620–628 (2006). doi:10.1002/jbm.a.30711.
PubMed
CAS
Google Scholar
H. Patel. Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit. Rev. Ther. Drug Carr. Syst. 9:39–90 (1992).
CAS
Google Scholar
S. M. Moghimi and H. M. Patel. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—The concept of tissue specificity. Adv. Drug Deliv. Rev. 32:45–60 (1998). doi:10.1016/S0169-409X(97)00131-2.
PubMed
CAS
Article
Google Scholar
G. L. Scherphof and J. A. A. M. Kamps. The role of hepatocytes in the clearance of liposomes from the blood circulation. Prog. Lipid Res. 40:149–166 (2001). doi:10.1016/S0163-7827(00)00020-5.
PubMed
CAS
Article
Google Scholar
J. Senior, C. Delgado, D. Fisher, C. Tilcock, and G. Gegoriadis. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim. Biophys. Acta. 1062:77–82 (1991). doi:10.1016/0005-2736(91)90337-8.
PubMed
CAS
Article
Google Scholar
T. Ishida, M. Harada, X. Y. Wang, M. Ichihara, K. Irimura, and H. Iwada. Accelerated blood clearance of PEGylated liposimes following preceding injection: Effects of lipid dose and PEG surface density and chain length of the first-dose liposomes. J. Control. Release. 105:305–317 (2005). doi:10.1016/j.jconrel.2005.04.003.
PubMed
CAS
Article
Google Scholar
T. Ishida, S. Kashima, and H. Kiwada. The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J. Control. Release. 126:162–165 (2008).
PubMed
CAS
Google Scholar
X. Y. Wang, T. Ishida, M. Ichihara, and H. Kiwada. Influence of the physicochemical properties of liposomes on the accelerated blood clearance phenomenon in rats. J. Control. Release. 104:91–102 (2005). doi:10.1016/j.jconrel.2005.01.008.
PubMed
CAS
Article
Google Scholar
T. M. Allen. Toxicity of drug carriers to the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 2:55–67 (1988). doi:10.1016/0169-409X(88)90005-1.
CAS
Article
Google Scholar
P. Laverman, M. G. Carstens, O. C. Boerman, E. T. M. Dams, W. J. G. Oyen, N. V. Rooijen, F. H. M. Corstens, and G. Storm. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J. Pharmacol. Exp. Ther. 298:607–612 (2001).
PubMed
CAS
Google Scholar
P. Laverman, O. C. Boerman, W. J. G. Oyen, F. H. M. Corstens, and G. Storm. In vivo applications of PEG liposomes: unexpected observations. Crit. Rev. Ther. Drug Carr. Syst. 18:551–566 (2001).
CAS
Google Scholar
A. Judge, K. McClintock, J. Phelps, and I. Maclachlan. Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol. Ther. 13:328–337 (2006). doi:10.1016/j.ymthe.2005.09.014.
PubMed
CAS
Article
Google Scholar
M. G. Carstens, B. Romberg, P. Laverman, O. C. Boerman, C. Oussoren, and G. Storm. Observations on the disappearance of the stealth property of PEGylated liposomes. Effect of lipid dose and dosing frequency. Liposome Technology. 3:79–93 (2006).
Google Scholar
D. W. Kim, S. Y. Kim, H. K. Kim, S. W. Kim, S. W. Shin, J. S. Kim, K. Park, M. Y. Lee, and D. S. Heo. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol. 18:2009–2014 (2007). doi:10.1093/annonc/mdm374.
PubMed
Article
Google Scholar
K. S. Lee, H. C. Chung, S. A. Im, Y. H. Park, C. S. Kim, S. B. Kim, S. Y. Rha, M. Y. Lee, and J. Ro. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat. 108:241–250 (2008). doi:10.1007/s10549-007-9591-y.
PubMed
CAS
Article
Google Scholar
J. Szebeni, C. R. Alving, L. Rosivall, R. Bünger, L. Barabyi, P. Bedöcs, M. Tóth, and Y. Barenholz. Animal models of complement-mediates hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J. Liposome Res. 17:107–117 (2007). doi:10.1080/08982100701375118.
PubMed
CAS
Article
Google Scholar
J. Szebeni, J. L. Fontana, N. M. Wassef, P. D. Mongan, D. S. Morse, D. E. Dobbins, G. L. Stahl, R. Bünger, and C. R. Alving. Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs a model for pseudoallergic cardiopulmonary reactions to liposomes: Role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation. 99:2302–2309 (1999).
PubMed
CAS
Google Scholar
A. Chanan-Khan, J. Szebeni, S. Savay, L. Liebes, N. M. Rafique, C. R. Alving, and F. M. Muggia. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann. Oncol. 14:1430–1437 (2003). doi:10.1093/annonc/mdg374.
PubMed
CAS
Article
Google Scholar
F. Cognasse, J. W. Semple, and O. Gerraud. Platelets as potential immunomodulators: is there a role for platelet Toll-like receptors. Curr. Immunol. Rev. 3:109–115 (2007). doi:10.2174/157339507780655522.
CAS
Article
Google Scholar
S. C. Pitchford. Novel uses for anti-platelet agents as anti-inflammatory drugs. Br. J. Pharmacol. 152:987–1002 (2007). doi:10.1038/sj.bjp.0707364.
PubMed
CAS
Article
Google Scholar
B. E. Kehrel and K. Jurk. Platelets at the interface between hemostasis and innate immunity. Transfusion Med. Hemother. 31:379–386 (2004). doi:10.1159/000082482.
Article
Google Scholar
P. V. Hundelshausen and C. Weber. Platelets as immune cells: Bridging inflammation and cardiovascular disease. Circ. Res. 100:27–40 (2007). doi:10.1161/01.RES.0000252802.25497.b7.
Article
CAS
Google Scholar
H. C. Loughrey, M. B. Bally, L. W. Reinish, and P. R. Cullis. The binding of phosphatidylglycerol liposomes to rat platelets is mediated by complement. Thromb. Haemost. 64:172–176 (1990).
PubMed
CAS
Google Scholar
G. Zbinden, H. Wunderli-Allenspach, and L. Grimm. Assessment of thrombogenic potential of liposomes. Toxicology. 54:273–280 (1989). doi:10.1016/0300-483X(89)90063-2.
PubMed
CAS
Article
Google Scholar
M. J. Parnham and H. Wetzig. Toxicity screening of liposomes. Chem. Phys. Lipids. 64:263–274 (1993).
PubMed
CAS
Article
Google Scholar
V. R. Berdichevskii, R. A. Markosyan, E. Y. Pozin, V. N. Smirnov, A. V. Suvorov, V. P. Torchilin, and E. I. Chazov. Effect of liposomes on platelet function. Bull. Exp. Biol. Med. 88:828–831 (1979). doi:10.1007/BF00869205.
Article
Google Scholar
V. I. Zakrevskii, I. A. Rud’ko, and A. A. Kubatiev. Effect of negatively charged liposomes on ADP-induced platelet aggregation. Bull. Exp. Biol. Med. 114:1590–1593 (1992). doi:10.1007/BF00837645.
Article
Google Scholar
V. Kumar, A. K. Abbas, and N. Fausto. Pathologic Basis of Disease. Seventh edition, Elsevier Saunders, Philadelphia, PA, 2005.
Google Scholar
H. C. C. F. Neto, D. M. Stafforini, S. M. Prescott, and G. A. Zimmerman. Regulating inflammation through the anti-inflammatory enzyme platelet-activating factor-acetylhydrolase. Mem. Inst. Oswaldo Cruz. 100:83–91 (2005).
Google Scholar
S. D. Shuklu. Platelet-activation factor receptor and signal transduction mechanism. FASEB J. 6:2296–2301 (1992).
Google Scholar
A. Radomski, P. Jurasz, D. Alonso-Escolano, M. Drews, M. Morandi, T. Malinski, and M. W. Radomski. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146:882–893 (2005). doi:10.1038/sj.bjp.0706386.
PubMed
CAS
Article
Google Scholar
J. M. Koziara, J. J. Oh, W. S. Akers, S. P. Ferraris, and R. J. Mumper. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm. Res. 22:1821–1828 (2005). doi:10.1007/s11095-005-7547-7.
PubMed
CAS
Article
Google Scholar
F. D. Finkelman. Anaphylaxis: lessons from mouse models. J. Allergy Clin. Immunol. 120:506–515; 516–507 (2007), quiz .
PubMed
CAS
Article
Google Scholar
P. Vadas, M. Gold, B. Perelman, G. M. Liss, G. Lack, T. Blyth, F. E. Simons, K. J. Simons, D. Cass, and J. Yeung. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N. Engl. J. Med. 358:28–35 (2008). doi:10.1056/NEJMoa070030.
PubMed
CAS
Article
Google Scholar
C. Arigita, L. Bevaart, L. A. Everse, G. A. Koning, W. E. Hennink, D. J. Crommelin, J. G. van de Winkel, M. J. van Vugt, G. F. Kersten, and W. Jiskoot. Liposomal meningococcal B vaccination: role of dendritic cell targeting in the development of a protective immune response. Infect. Immun. 71:5210–5218 (2003). doi:10.1128/IAI.71.9.5210-5218.2003.
PubMed
CAS
Article
Google Scholar
M. van de Weert, W. E. Hennink, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159–1167 (2000). doi:10.1023/A:1026498209874.
PubMed
Article
Google Scholar