Skip to main content

Advertisement

Log in

The Role of Corneocytes in Skin Transport Revised—A Combined Computational and Experimental Approach

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate mechanisms of compound–corneocyte interactions in a combined experimental and theoretical approach.

Materials and Methods

Experimental methods are presented to investigate compound–corneocyte interactions in terms of dissolution within water of hydration and protein binding and to quantify the extent of the concurrent mechanisms. Results are presented for three compounds: caffeine, flufenamic acid, and testosterone. Two compartmental stratum corneum models M1 and M2 are formulated based on experimentally determined input parameters describing the affinity to lipid, proteins and water. M1 features a homogeneous protein compartment and considers protein interactions only via intra-corneocyte water. In M2 the protein compartment is sub-divided into a cornified envelope compartment interacting with inter-cellular lipids and a keratin compartment interacting with water.

Results

For the non-protein binding caffeine the impact of the aqueous compartment on stratum corneum partitioning is overestimated but is successfully modeled after introducing a bound water fraction that is non-accessible for compound dissolution. For lipophilic, keratin binding compounds (flufenamic acid, testosterone) only M2 correctly predicts a concentration dependence of stratum corneum partition coefficients.

Conclusions

Lipophilic and hydrophilic compounds interact with corneocytes. Interactions of lipophilic compounds are probably confined to the corneocyte surface. Interactions with intracellular keratin may be limited by their low aqueous solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Aqu:

aqueous corneocyte domain

c i :

concentration

c max,i :

Langmuir saturation constant (maximum binding capacity)

CAF:

caffeine

cor:

corneocytes

cpe:

cornified protein envelope

D cor :

diffusion coefficient within corneocytes

DCM:

dichloro methane

don:

Donor

FFA:

flufenamic acid

SC,dry:

usually freeze-dried SC, ω aqu = 0

SC,hyd:

hydrated SC

k i :

Langmuir binding affinity (adsorption coefficient)

K i/j :

partition coefficient

K Oct/w :

logarithmical octanol water partition coefficient

ker:

keratin

lip:

intercellular SC lipid bilayers

LVP:

low viscous paraffin

M1:

compartmental model 1

M2:

compartmental model 2

MW :

molecular weight

pK a :

acid constant

pro:

SC proteins (=ker + cpe)

q max,i :

protein maximum loading capacity

s i :

saturation concentration

SC:

stratum corneum

Soer,7.4:

Soerensen phosphate buffer pH 7.4

TST:

testosterone

V i :

volume

w i :

weight

w 0 :

weight of substance within the incubation solution before equilibration

w End :

weight of substance within the incubation solution after equilibration

ρ i :

density

Γi,j :

interface

Ωi :

compartment

\(\varphi _{\text{j}}^{\text{i}} \) :

volume fraction V i/V j

\(\omega _{\text{j}}^{\text{i}} \) :

weight fraction w i/w j

\(\omega _{{\text{SC,dry}}}^{{\text{aqu,bound}}} \) :

weight fraction of bound aqueous phase per weight of dry SC

References

  1. A. C. Williams, and B. W. Barry. Penetration enhancers. Adv. Drug Deliv. Rev. 56:603–618 (2004). doi:10.1016/j.addr.2003.10.025.

    Article  PubMed  CAS  Google Scholar 

  2. R. Panchagnula, H. Desu, A. Jain, and S. Khandavilli. Effect of lipid bilayer alteration on transdermal delivery of a high-molecular-weight and lipophilic drug: studies with paclitaxel. J. Pharm. Sci. 93:2177–2183 (2004). doi:10.1002/jps.20140.

    Article  PubMed  CAS  Google Scholar 

  3. A. K. Jain, N. S. Thomas, and R. Panchagnula. Transdermal drug delivery of imipramine hydrochloride. I. Effect of terpenes. J. Control. Release. 79:93–101 (2002). doi:10.1016/S0168-3659(01)00524-7.

    Article  PubMed  CAS  Google Scholar 

  4. M. Sznitowska, S. Janicki, and A. C. Williams. Intracellular or intercellular localization of the polar pathway of penetration across stratum corneum. J. Pharm. Sci. 87:1109–1114 (1998). doi:10.1021/js980018w.

    Article  PubMed  CAS  Google Scholar 

  5. J. Lademann, H. Richter, A. Teichmann, N. Otberg, U. Blume-Peytavi, J. Luengo, B. Weiß, U.F. Schaefer, C.-M. Lehr, R. Wepf, and W. Sterry. Nanoparticles—an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 66:159–164 (2007). doi:10.1016/j.ejpb.2006.10.019.

    Article  PubMed  CAS  Google Scholar 

  6. N. Otberg, A. Patzelt, U. Rasulev, T. Hagemeister, M. Linscheid, R. Sinkgraven, W. Sterry, and J. Lademann. The role of hair follicles in the percutaneous absorption of caffeine. Br. J. Clin. Pharmacol. 65:488–492 (2008). doi:10.1111/j.1365–2125.2007.03065.x.

    Article  PubMed  CAS  Google Scholar 

  7. B. W. Barry. Drug delivery routes in skin: A novel approach. Adv. Drug Deliv. Rev. 54:S31–40 (2002).

    Google Scholar 

  8. K. D. Peck, A.-H. Ghanem, and W. I. Higuchi. Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharm. Res. 11:1306–1314 (1994). doi:10.1023/A:1018998529283.

    Article  PubMed  CAS  Google Scholar 

  9. G. B. Kasting, and N. D. Barai. Equilibrium water sorption in human stratum corneum. J. Pharm. Sci. 92:1624–1631 (2003). doi:10.1002/jps.10420.

    Article  PubMed  CAS  Google Scholar 

  10. J. A. Bouwstra, A. de Graaff, G. S. Gooris, J. Nijsse, J. W. Wiechers, and A. C. van Aelst. Water distribution and related morphology in human stratum corneum at different hydration levels. J. Invest. Dermatol. 120:750–758 (2003). doi:10.1046/j.1523-1747.2003.12128.x.

    Article  PubMed  CAS  Google Scholar 

  11. U. Jacobi, T. Tassopoulos, C. Surber, and J. Lademann. Cutaneous distribution and localization of dyes affected by vehicles all with different lipophilicity. Arch. Dermatol. Res. 297:303–310 (2006). doi:10.1007/s00403-005-0621-5.

    Article  PubMed  CAS  Google Scholar 

  12. B. Yu, K. H. Kim, P. T. So, D. Blankschtein, and R. Langer. Evaluation of fluorescent probe surface intensities as an indicator of transdermal permeant distributions using wide-area two-photon fluorescence microscopy. J. Pharm. Sci. 92:2354–2365 (2003). doi:10.1002/jps.10484.

    Article  PubMed  CAS  Google Scholar 

  13. H. E. Boddé, I. van den Brink, H. K. Koerten, and F. H. N. de Haan. Visualization of in vitro percutaneous penetration of mercuric chlorite; transport through intercellular space versus cellular uptake through desmosomes. J. Control. Release. 15:227–236 (1991). doi:10.1016/0168–3659(91)90114-S.

    Article  Google Scholar 

  14. M. E. Johnson, D. A. Berk, D. Blankschtein, D. E. Golan, R. K. Jain, and R. S. Langer. Lateral diffusion of small compounds in human stratum corneum and model lipid bilayer systems. Biophys. J. 71:2656–2668 (1996). doi:10.1016/S0006-3495(96)79457-2.

    Article  PubMed  CAS  Google Scholar 

  15. H. F. Frasch, and A. M. Barbero. Steady-state Flux and lag time in the stratum corneum lipid pathway: result from finite element models. J. Pharm. Sci. 92:2196–2107 (2003). doi:10.1002/jps.10466.

    Article  PubMed  CAS  Google Scholar 

  16. J. A. Bouwstra, G. S. Gooris, J. A. van der Spek, and W. Bras. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 97:1005–1012 (1991). doi:10.1111/1523-1747.ep12492217.

    Article  PubMed  CAS  Google Scholar 

  17. D. Kuempel, D. C. Swartzendruber, C. A. Squier, and P. W. Wertz. In vitro reconstitution of stratum corneum lipid lamellae. Biochim. Biophys. Acta. 1372:135–140 (1998). doi:10.1016/S0005-2736(98)00053-4.

    Article  PubMed  CAS  Google Scholar 

  18. M. A. Lampe, A. L. Burlingame, and J. A. Whitney. Human stratum corneum lipids: characterization and regional variations. J. Lipid Res. 24:120–130 (1983).

    PubMed  CAS  Google Scholar 

  19. A. Weerheim, and M. Ponec. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch. Dermatol. Res. 293:191–199 (2001). doi:10.1007/s004030100212.

    Article  PubMed  CAS  Google Scholar 

  20. S. Mitragotri. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeaion pathways. J. Control. Release. 86:69–92 (2003). doi:10.1016/S0168-3659(02)00321-8.

    Article  PubMed  CAS  Google Scholar 

  21. T. F. Wang, G. B. Kasting, and J. M. Nitsche. A multiphase microscopic diffusion model for stratum corneum permeability. I. formulation, solution, and illustrative results for representative compounds. J. Pharm. Sci. 95:620–648 (2006). doi:10.1002/jps.20509.

    Article  PubMed  CAS  Google Scholar 

  22. M. Heisig, R. Lieckfeldt, G. Wittum, G. Mazurkevich, and G. Lee. Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick-and-mortar model. Pharm. Res. 13:421–426 (1996). doi:10.1023/A:1016048710880.

    Article  PubMed  CAS  Google Scholar 

  23. A. Naegel, S. Hansen, D. Neumann, C. M. Lehr, U. F. Schaefer, G. Wittum, and M. Heisig. In-silico model of skin penetration based on experimentally determined input parameters. Part II: Mathematical modelling of in-vitro diffusion experiments. Identification of critical input parameters. Eur. J. Pharm. Biopharm. 68:368–379 (2008). doi:10.1016/j.ejpb.2007.05.018.

    Article  PubMed  CAS  Google Scholar 

  24. G. C. Charalambopoulou, P. Karamertzanis, E. S. Kikkinides, A. K. Stubos, N. K. Kanellopoulos, and A. T. Papaioannou. A study on structural and diffusion properties of porcine stratum corneum based on very small angle neutron scattering data. Pharm. Res. 17:1085–1091 (2000). doi:10.1023/A:1026453628800.

    Article  PubMed  CAS  Google Scholar 

  25. W. J. Albery, and J. Hadgraft. Percutaneous absorption: theoretical description. J. Pharm. Pharmacol. 31:129–139 (1979).

    PubMed  CAS  Google Scholar 

  26. A. S. Michaels, S. K. Chandrasekaran, and J. E. Shaw. Drug permeation through human skin: theory and in vitro experimental measurement. Am. Inst. Chem. Eng. J. 21:985–996 (1975).

    CAS  Google Scholar 

  27. R. J. Phillips, W. M. Deen, and J. F. Brady. Hindered transport in fibrous membranes and gels: effect of solute size and fiber configuration. J. Colloid Interface Sci. 139:363–373 (1990). doi:10.1016/0021–9797(90)90110-A.

    Article  CAS  Google Scholar 

  28. K. J. Packer, and T. C. Sellwood. Proton magnetic reosnance studies of hydrated stratum corneum. Part 2.—self diffusion. J. Chem. Soc. Faraday Trans. II. 74:1592–1606 (1978). doi:10.1039/f29787401592.

    Article  CAS  Google Scholar 

  29. T.-F. Wang, G. B. Kasting, and J. M. Nitsche. A multiphase microscopic diffusion model for stratum corneum permeability. II. Estimation of physicochemical parameters, and application to a large permeability database. J. Pharm. Sci. 96:3024–3051 (2007). doi:10.1002/jps.20883.

    Article  PubMed  CAS  Google Scholar 

  30. A. E. Kalinin, A. V. Kajava, and P. M. Steinert. Epithelial barrier function: asembly and structural features of the cornified cell envelope. BioEssays. 24:789–800 (2002). doi:10.1002/bies.10144.

    Article  PubMed  CAS  Google Scholar 

  31. P. J. Caspers, G. W. Lucassen, H. A. Bruining, and G. J. Puppels. Automated depth-scanning confocal microspectrometer for rapid in-vivo determination of water concentration profiles in human skin. J. Raman Spectrosc. 31:813–818 (2000) doi:10.1002/1097-555(200008/09)31:8/9<813::AID-JRS573>3.0.CO;2-7.

    Article  CAS  Google Scholar 

  32. K. Walkley. Bound water in stratum corneum measured by differential scanning calorimetry. J. Invest. Dermatol. 50:225–227 (1972). doi:10.1111/1523-747.ep12627251.

    Article  Google Scholar 

  33. J. R. Hansen, and W. Yellin. NMR and infrared spectroscopy studies of stratum corneum hydration. In H. H. G. Jellinek (ed.), Water structure at the water–polymer interface, Plenum, New York, 1972, pp. 19–28.

    Google Scholar 

  34. M. I. Foreman. A proton magnetic resonance study of water in human stratum corneum. Biochim. Biophys. Acta. 437:599–603 (1976).

    PubMed  CAS  Google Scholar 

  35. D. A. Van Hal, E. Jeremiasse, H. E. Junginger, F. Spies, and J. A. Bouwstra. Structure of fully hydrated human stratum corneum: A freeze-fracture electron microscopy study. J. Invest. Dermatol. 106:89–95 (1996). doi:10.1111/1523-1747.ep12328031.

    Article  PubMed  Google Scholar 

  36. G. C. Charalambopoulou, T. A. Steriotis, T. Hauss, A. K. Stubos, and N. K. Kanellopoulos. Structural alterations of fully hydrated human stratum corneum. Physica B: Condensed Matter 350: e603–e606 (2004).

    Google Scholar 

  37. P. V. Raykar, M.-C. Fung, and B. D. Anderson. The role of protein and lipid domains in the uptake of solutes by human stratum corneum. Pharm. Res. 5:140–150 (1988). doi:10.1023/A:1015956705293.

    Article  PubMed  CAS  Google Scholar 

  38. J. M. Nitsche, T. F. Wang, and G. B. Kasting. A two-phase analysis of solute partitioning into the stratum corneum. J. Pharm. Sci. 95:649–666 (2006). doi:10.1002/jps.20549.

    Article  PubMed  CAS  Google Scholar 

  39. T. P. Banning, and C. M. Heard. Binding of doxycycline to keratin, melanin and human epidermal tissue. Int. J. Pharm. 235:219–227 (2002). doi:10.1016/S0378-5173(01)00988-7.

    Article  PubMed  CAS  Google Scholar 

  40. C. M. Heard, B. V. Monk, and A. J. Modley. Binding of primaquine to epidermal membranes and keratin. Int. J. Pharm. 257:237–244 (2003). doi:10.1016/S0378–5173(03)00140-6.

    Article  PubMed  CAS  Google Scholar 

  41. K. Kubota, E. Koyama, and E. H. Twizell. Dual sorption model for the nonlinear percutaneous permeation kinetics of timolol. J. Pharm. Sci. 82:1205–1208 (1993). doi:10.1002/jps.2600821204.

    Article  PubMed  CAS  Google Scholar 

  42. C. Surber, K.-P. Wilhelm, M. Hori, H. I. Maibach, and R. H. Guy. Optimization of topical therapy: partitioning of drugs into stratum corneum. Pharm. Res. 7:1320–1324 (1990). doi:10.1023/A:1015958526423.

    Article  PubMed  CAS  Google Scholar 

  43. C. Surber, K.-P. Wilhelm, H. I. Maibach, L. L. Hall, and R. H. Guy. Partitioning of chemicals into human stratum corneum: Implications for risk assessment following dermal exposure. Fundam. Appl. Toxicol. 15:99–107 (1990). doi:10.1016/0272-0590(90)90167-I.

    Article  PubMed  CAS  Google Scholar 

  44. U. Hagedorn-Leweke, and B. C. Lippold. Accumulation of sunscreens and other compounds in keratinous substrates. Eur. J. Pharm. Biopharm. 46:215–221 (1998). doi:10.1016/S0939-6411(97)00165-3.

    Article  PubMed  CAS  Google Scholar 

  45. H. Wagner, K. H. Kostka, C. M. Lehr, and U. F. Schaefer. Correlation between stratum corneum/water-partition coefficient and amounts of flufenamic acid penetrated into the stratum corneum. J. Pharm. Sci. 91:1915–1921 (2002). doi:10.1002/jps.10183.

    Article  PubMed  CAS  Google Scholar 

  46. P. Meares. The diffusion of gases through polyvinyl acetate. J. Am. Chem. Soc. 76:3415–3422 (1954). doi:10.1021/ja01642a015.

    Article  CAS  Google Scholar 

  47. S. K. Chandrasekaran, P. S. Campbell, and T. Watanabe. Application of the “dual sorption” model to drug transport through skin. Polym. Eng. Sci. 20:36–39 (1980). doi:10.1002/pen.760200107.

    Article  Google Scholar 

  48. S. Hansen, A. Henning, A. Naegel, M. Heisig, G. Wittum, D. Neumann, K. H. Kostka, J. Zbytovska, C. M. Lehr, and U. F. Schaefer. In-silico model of skin penetration based on experimentally determined input parameters. Part I: Experimental determination of partition and diffusion coefficients. Eur. J. Pharm. Biopharm. 68:352–367 (2008). doi:10.1016/j.ejpb.2007.05.012.

    Article  PubMed  CAS  Google Scholar 

  49. S. Mitragotri. A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on scaled particle theory. J. Pharm. Sci. 91:744–752 (2002). doi:10.1002/jps.10048.

    Article  PubMed  CAS  Google Scholar 

  50. B. D. Anderson, W. I. Higuchi, and P. V. Raykar. Heterogeneity effects on permeability–partition coefficient relationships in human stratum corneum. Pharm. Res. 5:566–573 (1988). doi:10.1023/A:1015989929342.

    Article  PubMed  CAS  Google Scholar 

  51. R. L. Anderson, and J. M. Cassidy. Variation in physical dimensions and chemical composition of human stratum corneum. J. Invest. Dermatol. 61:30–32 (1973). doi:10.1111/1523-1747.ep12674117.

    Article  PubMed  CAS  Google Scholar 

  52. K. Abdulmajed, C. M. Heard, C. McGuigan, and W. J. Pugh. Topical delivery of retinyl ascorbate co-drug. 2. Comparative skin tissue and keratin binding studies. Skin Pharmacol. Physiol. 17:274–282 (2004). doi:10.1159/000081112.

    Article  PubMed  CAS  Google Scholar 

  53. D. C. Schwartzendruber, P. Wertz, and D. T. Downing. Evidence that the corneocyte has a chemically bound lipid envelope. J. Invest. Dermatol. 88:709–713 (1987). doi:10.1111/1523-1747.ep12470383.

    Article  Google Scholar 

  54. S. Sobue, K. Sekiguchi, and T. Nabeshima. Intracutaneous distributions of fluconazole, itraconazole, and griseofulvin in Guinea pigs and binding to human stratum corneum. Antimicrob. Agents Chemother. 48:216–223 (2004). doi:10.1128/AAC.48.1.216-223.2004.

    Article  PubMed  CAS  Google Scholar 

  55. H. Takahashi. Problems with the topical antimycotics. Jpn. J. Med. Mycol. 35:331–334 (1994).

    Google Scholar 

  56. S. P. Banks Schlegel, and C. C. Harris. Tissue-specific expression of keratin proteins in human esophageal and epidermal epithelium and their cultured keratinocytes. Exp. Cell Res. 146:271–280 (1983). doi:10.1016/0014-4827(83)90129-5.

    Article  PubMed  CAS  Google Scholar 

  57. P. G. Chu, and L. M. Weiss. Keratin expression in human tissues and neoplasms. Histopathology. 40:403–439 (2002). doi:10.1046/j.1365-2559.2002.01387.x.

    Article  PubMed  CAS  Google Scholar 

  58. J. Kubilus, M. J. MacDonald, and H. P. Baden. Epidermal proteins of cultured human and bovine keratinocytes. Biochim. Biophys. Acta. 578:484–492 (1979).

    PubMed  CAS  Google Scholar 

  59. Y. Katz, and J. M. Diamond. A method for measuring nonelectrolyte partition coefficients between liposomes and water. J. Membr. Biol. 17:69–86 (1974). doi:10.1007/BF01870173.

    Article  PubMed  CAS  Google Scholar 

  60. Y. Katz, and J. M. Diamond. Nonsolvent water in liposomes. J. Membr. Biol. 17:87–100 (1974). doi:10.1007/BF01870174.

    Article  PubMed  CAS  Google Scholar 

  61. E. Abignente, and P. de Caprariis. Flufenamic acid. In K. Florey (ed.), Analytical profiles of drug substances, Vol. 11, Academic, New York, London, 1982, p. 324.

    Google Scholar 

  62. OECD. Test guideline 427: Skin Absorption: In Vivo Method. OECD, Paris, 2004.

    Google Scholar 

  63. OECD. Test guideline 428: Skin Absorption: In Vitro Method. OECD, Paris, 2004.

    Google Scholar 

  64. M. E. Johnson, D. Blankschtein, and R. Langer. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86:1162–1172 (1997). doi:10.1021/js960198e.

    Article  PubMed  CAS  Google Scholar 

  65. A. L. Bunge, and R. L. Cleek. A new method for estimating dermal absorption chemical exposure: 2. Effect of molecular weight and octanol–water partitioning. Pharm. Res. 12:88–95 (1995). doi:10.1023/A:1016242821610.

    Article  PubMed  CAS  Google Scholar 

  66. R. O. Potts, and R. H. Guy. Predicting skin permeability. Pharm. Res. 9:663–669 (1992). doi:10.1023/A:1015810312465.

    Article  PubMed  CAS  Google Scholar 

  67. H. Wagner, K. H. Kostka, C. M. Lehr, and U. F. Schaefer. pH profiles in human skin: influence of two in vitro test systems for drug delivery testing. Eur. J. Pharm. Biopharm. 55:57–65 (2003). doi:10.1016/S0939-6411(02)00125-X.

    Article  PubMed  CAS  Google Scholar 

  68. K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton, and R. M. Clegg. Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys. J. 83:1682–1690 (2002). doi:10.1016/S0006-3495(02)73936-2.

    Article  PubMed  CAS  Google Scholar 

  69. S. Yadav, N. G. Pinto, and G. B. Kasting. Thermodynamics of water interaction with human stratum corneum I: Measurement by isothermal calorimetry. J. Pharm. Sci. 96:1585–1597 (2007). doi:10.1002/jps.20781.

    Article  PubMed  CAS  Google Scholar 

  70. H. Wagner, K. H. Kostka, C. M. Lehr, and U. F. Schaefer. Drug distribution in human skin using two different in vitro test systems: comparison with in vivo data. Pharm. Res. 17:1475–1481 (2000). doi:10.1023/A:1007648807195.

    Article  PubMed  CAS  Google Scholar 

  71. A. M. Kligman, and E. Christophers. Preparation of isolated sheets of human stratum corneum. Arch. Dermatol. Res. 88:702–705 (1963).

    CAS  Google Scholar 

  72. R. J. Scheuplein. Molecular structure and diffusional processes across intact stratum corneum: Semi-Annual Report. US Army Chemical Research and Development Laboratories, Edgewood Arsenal, MD, 1966.

    Google Scholar 

  73. A. Alonso, J. V. Da Silva, and M. Tabak. Hydration effects on the protein dynamics in stratum corneum as evaluated by EPR spectroscopy. Biochim. Biophys. Acta. 1646:32–41 (2003).

    PubMed  CAS  Google Scholar 

  74. I. H. Blank, J. Moloney, 3rd, A. G. Emslie, I. Simon, and C. Apt. The diffusion of water across the stratum corneum as a function of its water content. J. Invest. Dermatol. 82:188–194 (1984). doi:10.1111/1523-1747.ep12259835.

    Article  PubMed  CAS  Google Scholar 

  75. G. Imokawa, H. Kuno, and M. Kawai. Stratum corneum lipids serve as a bound-water modulator. J. Invest. Dermatol. 96:845–851 (1991). doi:10.1111/1523-1747.ep12474562.

    Article  PubMed  CAS  Google Scholar 

  76. T. Richter, C. Peuckert, M. Sattler, K. Koenig, I. Riemann, U. Hintze, K.-P. Wittern, R. Wiesendanger, and R. Wepf. Dead but highly dynamic—the stratum corneum is divided into three hydration zones. Skin Pharmacol. Physiol. 17:246–257 (2004). doi:10.1159/000080218.

    Article  PubMed  CAS  Google Scholar 

  77. G. B. Kasting, N. D. Barai, T. F. Wang, and J. M. Nitsche. Mobility of water in human stratum corneum. J. Pharm. Sci. 92:2326–2340 (2003). doi:10.1002/jps.10483.

    Article  PubMed  CAS  Google Scholar 

  78. M. U. Zubair, M. M. A. Hassan, and I. A. Al-Meshal. Caffeine. In K. Florey (ed.), Analytical profiles of drug substances, Vol. 15, Academic, London, 1986.

    Google Scholar 

  79. W. R. Vieth, and K. J. Sladek. A model for diffusion in a glassy polymer. J. Colloid Sci. 20:1014–1033 (1965). doi:10.1016/0095-8522(65)90071-1.

    Article  CAS  Google Scholar 

  80. M. Schaefer-Korting, U. Bock, W. Diembeck, H. J. Düsing, A. Gamer, E. Haltner-Ukomadu, C. Hoffmann, M. Kaca, H. Kamp, S. Kersen, M. Kietzmann, H. C. Korting, H.-U. Kraechter, C.-M. Lehr, M. Liebsch, A. Mehling, C. Mueller-Goymann, F. Netzlaff, F. Niedorf, M. K. Ruebbelke, U. F. Schaefer, E. Schmidt, S. Schreiber, H. Spielmann, A. Vuia, and M. Weimer. Reconstructed human epidermis for skin absorption testing: Results of the German validation study. Altern. Lab. Anim. 34:283–294 (2006).

    Google Scholar 

  81. M. D. Barratt. Quantitative structure–activity relationships for skin permeability. Toxicol. In Vitro. 9:27–37 (1995). doi:10.1016/0887-2333(94)00190-6.

    Article  CAS  Google Scholar 

  82. P. S. Magee. Some novel approaches to modelling transdermal penetration and reactivity with epidermal proteins. In J. Devillers (ed.), Comparative QSAR, Taylor & Francis, London, 1998, pp. 137–168.

    Google Scholar 

  83. E. Jaeckle, U. F. Schaefer, and H. Loth. Comparison of effects of different ointment bases on the penetration of ketoprofen through heat-separated human epidermis and artificial lipid barriers. J. Pharm. Sci. 92:1396–1406 (2002). doi:10.1002/jps.10398.

    Article  Google Scholar 

  84. H. Fischer, I. Polikarpov, and A. F. Craievich. Average protein density is a molecular-weight-dependent function. Protein Sci. 13:2825–2828 (2004). doi:10.1110/ps.04688204.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The DFG (Deutsche Forschungsgemeinschaft; DFG Grant BIZ 4/1), the ZEBET (Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergänzungsmethoden zum Tierversuch) are thanked for financial support. Parts of this work have been performed in the course of a diploma thesis financed by the Erasmus/Sokrates program. Miss Lenka Kolackova is thanked for establishing UV-analytics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich F. Schaefer.

Appendices

Appendix A: The Volume Fractions of the SC Compartments

Conventionally water, lipid or protein content within SC is expressed as weight fractions relative to the weight of dry SC, for example

$$\omega _{{\text{SC,dry}}}^{{\text{lip}}} = \frac{{w_{{\text{lip}}} }}{{w_{{\text{SC,dry}}} }}$$
(32)

For convenience and easy comparison with other authors we also use weight fractions for representation of data. However, for calculations we need volume fractions relative to the volume of dry as well as hydrated SC. This section will explain how weight and volume fractions are related. The derivation of \(\varphi _{{\text{SC,hyd}}}^i \) from \(\omega _{{\text{SC,dry}}}^i \) will be shown here exemplarily for \(\varphi _{{\text{SC,hyd}}}^{{\text{lip}}} \) for M1 but can be done analogously for all other compartments as well as for M2. We assume dry SC to be composed of 30% w/w lipids, i.e. \(\omega _{{\text{SC,dry}}}^{{\text{lip}}} = 0.3\) and 70% w/w proteins \(\omega _{{\text{SC,dry}}}^{{\text{pro}}} = \omega _{{\text{SC,dry}}}^{{\text{SC,dry}}} - \omega _{{\text{SC,dry}}}^{{\text{lip}}} = 1 - \omega _{{\text{SC,dry}}}^{{\text{lip}}} = 0.7\). These are empirical values recorded in our lab in vitro for female abdominal skin of 14 different patients in 136 samples by lipid extraction of freeze-dried SC and weighing. \(\omega _{{\text{SC,dry}}}^{{\text{cpe}}} \) was previously determined to be 0.07 (30) so that \(\omega _{{\text{SC,dry}}}^{\ker } = \omega _{{\text{SC,dry}}}^{{\text{pro}}} - \omega _{{\text{SC,dry}}}^{{\text{cpe}}} = 0.63\). Due to the definition in Eq. 2 we obtain

$$\omega _{{\text{SC,hyd}}}^{{\text{lip}}} = \frac{{w_{{\text{lip}}} }}{{w_{{\text{SC,dry}}} + w_{{\text{aqu}}} }}$$
(33)

where the last identity results from dividing both numerator and denominator by w SC,dry

$$\omega _{{\text{SC,hyd}}}^{{\text{lip}}} = \frac{{\frac{{w_{{\text{lip}}} }}{{w_{{\text{SC,dry}}} }}}}{{\frac{{w_{{\text{SC,dry}}} }}{{w_{{\text{SC,dry}}} }} + \frac{{w_{{\text{aqu}}} }}{{w_{{\text{SC,dry}}} }}}} = \frac{{\omega _{{\text{SC,dry}}}^{{\text{lip}}} }}{{1 + \omega _{{\text{SC,dry}}}^{{\text{aqu}}} }}$$
(34)

Therefore \(\omega _{{\text{SC,hyd}}}^i \) varies depending on the extent of SC hydration \(\omega _{{\text{SC,hyd}}}^{{\text{aqu}}} \) in contrast to \(\omega _{{\text{SC,dry}}}^i \) which is always constant. Relating Eq. 34 to the specific densities the volume fractions of the respective compartments are calculated:

$$\varphi _{{\text{SC,hyd}}}^{{\text{lip}}} = \omega _{{\text{SC,hyd}}}^{{\text{lip}}} \frac{{\rho _{{\text{SC,hyd}}} }}{{\rho _{{\text{lip}}} }}$$
(35)

with the density of hydrated SC defined as

$$\rho _{{\text{SC,hyd}}} = \frac{1}{{\omega _{{\text{SC,dry}}}^{{\text{lip}}} /\rho _{{\text{lip}}} + \omega _{{\text{SC,dry}}}^{{\text{pro}}} /\rho _{{\text{pro}}} + \omega _{{\text{SC,dry}}}^{{\text{aqu}}} /\rho _{{\text{aqu}}} }}$$
(36)

For dry SC and SC lipids the following densities are reported in literature: ρ SC,dry = 1.3 g/cm3, and ρ lip = 0.973 g/cm3 (72,83). The density of SC proteins can be calculated from ρ SC,dry as shown in Eq. 37 for M1.

$$\rho _{{\text{SC,dry}}} = \frac{{w_{{\text{SC,dry}}} }}{{V_{{\text{SC,dry}}} }} = \frac{{w_{{\text{SC,dry}}} }}{{\frac{{w_{{\text{lip}}} }}{{\rho _{{\text{lip}}} }} + \frac{{w_{{\text{pro}}} }}{{\rho _{{\text{pro}}} }}}}$$
(37)

Dividing both numerator and denominator by w SC,dry Eq. 37 may be expressed in terms of weight fractions:

$$\rho _{{\text{SC,dry}}} = \frac{{{{w_{{\text{SC,dry}}} } \mathord{\left/{\vphantom {{w_{{\text{SC,dry}}} } {w_{{\text{SC,dry}}} }}} \right.\kern-\nulldelimiterspace} {w_{{\text{SC,dry}}} }}}}{{\frac{{{{w_{{\text{lip}}} } \mathord{\left/{\vphantom {{w_{{\text{lip}}} } {w_{{\text{SC,dry}}} }}} \right.\kern-\nulldelimiterspace} {w_{{\text{SC,dry}}} }}}}{{\rho _{{\text{lip}}} }} + \frac{{{{w_{{\text{pro}}} } \mathord{\left/{\vphantom {{w_{{\text{pro}}} } {w_{{\text{SC,dry}}} }}} \right.\kern-\nulldelimiterspace} {w_{{\text{SC,dry}}} }}}}{{\rho _{{\text{pro}}} }}}} = \frac{1}{{\frac{{\omega _{{\text{SC,dry}}}^{lip} }}{{\rho _{{\text{lip}}} }} + \frac{{\omega _{{\text{SC,dry}}}^{{\text{pro}}} }}{{\rho _{{\text{pro}}} }}}}$$
(38)
$$\rho _{{\text{pro}}} = \frac{{\omega _{{\text{SC,dry}}}^{{\text{pro}}} }}{{\frac{1}{{\rho _{{\text{SC,dry}}} }} - \frac{{\omega _{{\text{SC,dry}}}^{lip} }}{{\rho _{{\text{lip}}} }}}}$$
(39)

After reorganisation for ρ pro the protein density was calculated as 1.52 g/cm3. This value is well within the experimentally determined range (84). We assumed ρ ker and ρ cpe to be equal to ρ pro.

Appendix B: Transformation of Partition Coefficients

According to Eq. 17 the partition coefficients K SC,dry/don and K SC,hyd/don can be written as

$$K_{{\text{SC,}}{{{\text{dry}}} \mathord{\left/{\vphantom {{{\text{dry}}} {{\text{don}}}}} \right.\kern-\nulldelimiterspace} {{\text{don}}}}} = \frac{{c_{{\text{SC,dry}}} }}{{c_{{\text{don}}} }} = \frac{{{w \mathord{\left/{\vphantom {w {V_{{\text{SC,dry}}} }}} \right.\kern-\nulldelimiterspace} {V_{{\text{SC,dry}}} }}}}{{{w \mathord{\left/{\vphantom {w {V_{{\text{don}}} }}} \right.\kern-\nulldelimiterspace} {V_{{\text{don}}} }}}}$$
(40)
$$K_{{\text{SC,}}{{{\text{hyd}}} \mathord{\left/{\vphantom {{{\text{hyd}}} {{\text{don}}}}} \right.\kern-\nulldelimiterspace} {{\text{don}}}}} = \frac{{c_{{\text{SC,hyd}}} }}{{c_{{\text{don}}} }} = \frac{{{w \mathord{\left/{\vphantom {w {V_{{\text{SC,hyd}}} }}} \right.\kern-\nulldelimiterspace} {V_{{\text{SC,hyd}}} }}}}{{{w \mathord{\left/{\vphantom {w {V_{{\text{don}}} }}} \right.\kern-\nulldelimiterspace} {V_{{\text{don}}} }}}}$$
(41)

So that K SC,dry/don and K SC,hyd/don are related via

$$K_{{\text{SC,}}{{{\text{dry}}} \mathord{\left/{\vphantom {{{\text{dry}}} {{\text{don}}}}} \right.\kern-\nulldelimiterspace} {{\text{don}}}}} = K_{{\text{SC,}}{{{\text{hyd}}} \mathord{\left/{\vphantom {{{\text{hyd}}} {{\text{don}}}}} \right.\kern-\nulldelimiterspace} {{\text{don}}}}} \frac{{V_{{\text{SC,hyd}}} }}{{V_{{\text{SC,dry}}} }} = K_{{\text{SC,}}{{{\text{hyd}}} \mathord{\left/{\vphantom {{{\text{hyd}}} {{\text{don}}}}} \right.\kern-\nulldelimiterspace} {{\text{don}}}}} \frac{1}{{\varphi _{{\text{SC,hyd}}}^{{\text{SC,dry}}} }}$$
(42)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, S., Naegel, A., Heisig, M. et al. The Role of Corneocytes in Skin Transport Revised—A Combined Computational and Experimental Approach. Pharm Res 26, 1379–1397 (2009). https://doi.org/10.1007/s11095-009-9849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9849-7

Key words

Navigation