Skip to main content
Log in

Accurate Potentiometric Determination of Lipid Membrane–Water Partition Coefficients and Apparent Dissociation Constants of Ionizable Drugs: Electrostatic Corrections

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Potentiometric lipid membrane–water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis.

Materials and Methods

We conducted potentiometric titration experiments to determine lipid membrane–water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions.

Results

The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results.

Conclusion

Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane–water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. When P N is close to P I, the wrong assumption of a constant P I can also affect the calculated P N value, as the two parameters are typically derived simultaneously from the same data set.

  2. Data from another study (not published yet) conducted in our laboratory.

  3. This is also evident for terbinafine, although the conventional model, neglecting electrostatic interactions, could not be used to obtain P I values. The \(pK^{{app}}_{a} \)values at the same lipid concentrations were higher at higher bulk ionic strength, which indicates higher apparent P I (data not shown).

References

  1. C. J. Alcorn, R. J. Simpson, D. E. Leahy, and T. J. Peters. Partition and distribution coefficients of solutes and drugs in brush border membrane vesicles. Biochem. Pharmacol. 45:1775–1782 (1993). doi:10.1016/0006-2952(93)90433-W.

    Article  PubMed  CAS  Google Scholar 

  2. R. P. Austin, A. M. Davis, and C. N. Manners. Partitioning of ionizing molecules between aqueous buffers and phospholipid vesicles. J. Pharm. Sci. 84:1180–1183 (1995). doi:10.1002/jps.2600841008.

    Article  PubMed  CAS  Google Scholar 

  3. A. Avdeef. Absorption and drug development: solubility, permeability, and charge state. Wiley, New Jersey, 2003.

    Google Scholar 

  4. R. P. Austin, P. Barton, A. M. Davis, C. N. Manners, and M. C. Stansfield. The effect of ionic strength on liposome-buffer and 1-octanol-buffer distribution coefficients. J. Pharm. Sci. 87:599–607 (1998). doi:10.1021/js9703481.

    Article  PubMed  CAS  Google Scholar 

  5. A. Avdeef, K. J. Box, J. E. Comer, C. Hibbert, and K. Y. Tam. pH-metric logP 10. Determination of liposomal membrane–water partition coefficients of ionizable drugs. Pharm. Res. 15:209–215 (1998). doi:10.1023/A:1011954332221.

    Article  PubMed  CAS  Google Scholar 

  6. B. I. Escher, R. Schwarzenbach, and J. C. Westall. Evaluation of liposome–water partitioning of organic acids and bases. 2. Comparison of experimental determination methods. Environ. Sci. Technol. 34:3962–3968 (2000). doi:10.1021/es0010711.

    Google Scholar 

  7. S. D. Krämer, J. C. Gautier, and P. Saudemon. Considerations on the potentiometric log P determination. Pharm. Res. 15:1310–1313 (1998). doi:10.1023/A:1011968630713.

    Article  PubMed  Google Scholar 

  8. C. Ottiger, and H. Wunderli-Allenspach. Partition behaviour of acids and bases in a phosphatidylcholine liposome–buffer equilibrium dialysis system. Eur. J. Pharm. Sci. 5:223–231 (1997). doi:10.1016/S0928–0987(97)00278–9.

    Article  CAS  Google Scholar 

  9. A. V. Thomae, T. Koch, C. Panse, H. Wunderli-Allenspach, and S. D. Kramer. Comparing the lipid membrane affinity and permeation of drug-like acids: The intriguing effects of cholesterol and charged lipids. Pharm. Res. 24:1457–1472 (2007). doi:10.1007/s11095-007-9263-y.

    Article  PubMed  CAS  Google Scholar 

  10. B. de Castro, P. Gameiro, J. L. F. C. Lima, C. Matos, and S. Reis. A fast and reliable spectroscopic method for the determination of membrane–water partition coefficients of organic compounds. Lipids. 36:89–96 (2001). doi:10.1007/s11745-01-673-0.

    Article  PubMed  Google Scholar 

  11. C. Rodrigues, P. Gameiro, S. Reis, J. L. F. C. Lima, and B. de castro. Derivative spectrophotometry as a tool for the determination of drug partition coefficients in water/dimyristoyl-α-phosphatidylglycerol (DMPG) liposomes. Biophys. Chem. 94:97–106 (2001). doi:10.1016/S0301-4622(01)00227-7.

    Article  PubMed  CAS  Google Scholar 

  12. N. C. Santos, M. Prieto, and M. A. R. B. Castanho. Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim. Biophys. Acta. 1612:123–135 (2003). doi:10.1016/S0005-2736(03)00112-3.

    Article  PubMed  CAS  Google Scholar 

  13. R. P. Austin, P. Barton, A. M. Davis, R. E. Fessey, and M. C. Wenlock. The thermodynamics of the partitioning of ionizing molecules between aqueous buffers and phospholipid membranes. Pharm. Res. 22:1649–1657 (2005). doi:10.1007/s11095-005-6336-7.

    Article  PubMed  CAS  Google Scholar 

  14. X. Y. Liu, Q. Yang, N. Kamo, and J. Miyake. Effect of liposome type and membrane fluidity on drug–membrane partitioning analyzed by immobilized liposome chromatography. J. Chromatogr. A. 913:123–131 (2001). doi:10.1016/S0021-9673(00)01266-8.

    Article  PubMed  CAS  Google Scholar 

  15. Q. Yang, X. Y. Liu, S. Ajiki, M. Hara, P. Lundahl, and J. Miyake. Avidin–biotin immobilization of unilamellar liposomes in gel beads for chromatographic analysis of drug–membrane partitioning. J. Chromatogr. B Biomed. Sci. Appl. 707:131–141 (1998). doi:10.1016/S0378-4347(97)00620-8.

    Article  PubMed  CAS  Google Scholar 

  16. C. Matos, B. de Castro, P. Gameiro, J. L. Lima, and S. Reis. Zeta-potential measurements as a tool to quantify the effect of charged drugs on the surface potential of egg phosphatidylcholine liposomes. Langmuir. 20:369–377 (2004). doi:10.1021/la034780b.

    Article  PubMed  CAS  Google Scholar 

  17. M. Ikonen, L. Murtomäki, and K. Kontturia. An electrochemical method for the determination of liposome–water partition coefficients of drugs. J. Electroanal. Chem. 602:189–194 (2007). doi:10.1016/j.jelechem.2006.12.014.

    Article  CAS  Google Scholar 

  18. T. Hata, T. Sakamoto, H. Matsuki, and S. Kaneshina. Partition coefficients of charged and uncharged local anesthetics into dipalmitoylphosphatidylcholine bilayer membrane: estimation from pH dependence on the depression of phase transition temperatures. Colloids Surf. B Biointerfaces. 22:77–84 (2001). doi:10.1016/S0927-7765(01)00160-6.

    Article  PubMed  CAS  Google Scholar 

  19. A. Hildebrand, K. Beyer, R. Neubert, P. Garidel, and A. Blume. Temperature dependence of the interaction of cholate and deoxycholate with fluid model membranes and their solubilization into mixed micelles. Colloids Surf. B: Biointerfaces. 32:335–351 (2003). doi:10.1016/j.colsurfb.2003.08.001.

    Article  CAS  Google Scholar 

  20. K. Balon, B. U. Riebesehl, and B. W. Muller. Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm. Res. 16:882–888 (1999). doi:10.1023/A:1018882221008.

    Article  PubMed  CAS  Google Scholar 

  21. J. Lasch. Interaction of detergents with lipid vesicles. Biochim. Biophys. Acta. 1241:269–292 (1995).

    PubMed  Google Scholar 

  22. F. H. Clarke. Ionization constants by curve fitting: application to the determination of partition coefficients. J. Pharm. Sci. 73:226–230 (1984). doi:10.1002/jps.2600730221.

    Article  PubMed  CAS  Google Scholar 

  23. F. H. Clarke, and N. M. Cahoon. Ionization constants by curve fitting: determination of partition and distribution coefficients of acids and bases and their ions. J. Pharm. Sci. 76:611–620 (1987). doi:10.1002/jps.2600760806.

    Article  PubMed  CAS  Google Scholar 

  24. S. Ohki. Adsorption of local anesthetics on phospholipid membranes. Biochim. Biophys. Acta. 777:56–66 (1984). doi:10.1016/0005-2736(84)90496-6.

    Article  PubMed  CAS  Google Scholar 

  25. P. G. Thomas, and J. Seelig. Binding of the calcium antagonist flunarizine to phosphatidylcholine bilayers: charge effects and thermodynamics. Biochem. J. 291:397–402 (1993).

    PubMed  CAS  Google Scholar 

  26. M. S. Fernandez, and P. Fromherz. Lipoid pH indicators as probes of electrical potential and polarity in micells. J. Phys. Chem. 81:1755–1761 (1977). doi:10.1021/j100533a009.

    Article  CAS  Google Scholar 

  27. E. Kuchinka, and J. Seelig. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry. 28:4216–4221 (1989). doi:10.1021/bi00436a014.

    Article  PubMed  CAS  Google Scholar 

  28. H. D. Bäuerle, and J. Seelig. Interaction of charged and uncharged calcium channel antagonists with phospholipid membranes. Binding equilibrium, binding enthalpy, and membrane location. Biochemistry. 30:7203–7211 (1991). doi:10.1021/bi00243a023.

    Article  PubMed  Google Scholar 

  29. A. Hildebrand, R. Neubert, P. Garidel, and A. Blume. Bile salt induced solubilization of synthetic phosphatidylcholine vesicles studied by isothermal titration calorimetry. Langmuir. 18:2836–2847 (2002). doi:10.1021/la011421c.

    Article  CAS  Google Scholar 

  30. A. Seelig, P. R. Allegrini, and J. Seelig. Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group. Biochim. Biophys. Acta. 939:267–276 (1988). doi:10.1016/0005-2736(88)90070-3.

    Article  PubMed  CAS  Google Scholar 

  31. P. Friberger, and G. Aberg. Some physiochemical properties of the racemates and the optically active isomers of two local anaesthetic compounds. Acta Pharm. Suec. 8:361–364 (1971).

    PubMed  CAS  Google Scholar 

  32. M. Meloun, S. Bordovská, and L. Galla. The thermodynamic dissociation constants of four non-steroidal anti-inflammatory drugs by the least-squares nonlinear regression of multiwavelength spectrophotometric pH-titration data. J. Pharm. Biomed. Anal. 45:552–564 (2007). doi:10.1016/j.jpba.2007.07.029.

    Article  PubMed  CAS  Google Scholar 

  33. A. Avdeef, C. M. Berger, and C. Brownell. pH-metric solubility. 2: correlation between the acid–base titration and the saturation shake-flask solubility–pH methods. Pharm. Res. 17:85–89 (2000). doi:10.1023/A:1007526826979.

    Article  PubMed  CAS  Google Scholar 

  34. J. M. Carrozzino. Drug partitioning and solvation environments in lipid bilayers. Department of Chemistry, North Carolina State University, Raleigh, 2004, p. 224.

    Google Scholar 

  35. K. Ohsawa, and H. Ohshima. Electrophoretic mobility and isoelectric point of purified brush border membrane vesicles. Electrophoresis. 5:148–154 (1984). doi:10.1002/elps.1150050305.

    Article  CAS  Google Scholar 

  36. M. Sugawara, H. Oikawa, M. Kobayashi, K. Iseki, and K. Miyazaki. Effect of membrane surface potential on the uptake and the inhibition of cationic compounds in rat intestinal brush-border membrane vesicles and liposomes. Biochim. Biophys. Acta. 1234:22–28 (1995). doi:10.1016/0005-2736(94)00250-S.

    Article  PubMed  Google Scholar 

  37. C. Engvall, and P. Lundahl. Drug partition chromatography on immobilized porcine intestinal brush border membranes. J. Chromatogr. A. 1031:107–112 (2004). doi:10.1016/j.chroma.2003.11.063.

    Article  PubMed  CAS  Google Scholar 

  38. Cevc. Electrostatic characterization of liposomes. Chem. Phys. Lipids. 64:163–186 (1993). doi:10.1016/0009-3084(93)90064-A.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Cevc.

Appendix

Appendix

The intrinsic (lipid-dependent) membrane surface charge density, σ mem, is calculated from membrane composition:

$$\sigma _{mem} = z_L e_0 \cdot \frac{{x_C }}{{\left( {1 - x_C } \right) \cdot A_N + x_C \cdot A_C }}{\text{ }} \approx \frac{{z_L e_0 x_C }}{{A_L }}\quad ,$$
(9)

where z L is the charged lipid valence, e 0 the elementary electric charge, x C the molar fraction of the charged lipids with molecular area A C, and A N the average surface area of the neutral lipid molecules. In the current study, we used A N ≈ A C ≈ 0.65 nm2, which is a good approximation for typical fluid-phase phospholipids. During potentiometric titration, the relative proportion of the charged lipids may vary, if the employed pH range overlaps with the lipid titration range. If so, the resulting surface charge density variation must be considered.

The average drug-dependent membrane surface charge density, σ D, is calculated analogously:

$$\sigma _D = z_D e_0 \frac{{C_{mem}^I }}{{C_L A_L + \left( {C_{mem}^I + C_{mem}^N } \right)A_D }} \approx z_D e_0 \frac{{C_{mem}^I }}{{C_L A_L }}\quad .$$
(10)

z D is the bound drug valence, C L the membrane–forming lipid concentration, \(C^{{\text{I}}}_{{{\text{mem}}}}\) and \(C^{{\text{N}}}_{{{\text{mem}}}}\) the concentrations of the membrane associated ionized and neutral drug forms, respectively. The contribution of the membrane associated drug molecules to the lipid bilayer surface area, A D, is normally relatively small. It can thus be neglected. We can now calculate σ D once \(C^{{\text{I}}}_{{{\text{mem}}}}\) is known.

To calculate \(C^{{\text{I}}}_{{{\text{mem}}}}\), we will start with the total drug concentration C tot = C mem + C aq. Substitution of C aq from Eq. 2 and rearrangement allow calculation of the total membrane bound drug concentration:

$$C_{mem} = C_{tot} \frac{{P{\text{ }}r}}{{1 + P{\text{ }}r}}\quad .$$
(11)

The ionized drug fraction, α, is:

$$\alpha = \left\{ \begin{aligned}& \frac{{10^{pH - pK_a^{app} } }}{{10^{pH - pK_a^{app} } + 1}}{\text{ for an acid}} \\& \\& \frac{{10^{pK_a^{app} - pH} }}{{10^{pK_a^{app} - pH} + 1}}{\text{ for a base}} \\ \end{aligned} \right.\quad .$$
(12)

Combining Eqs. 6, 11, and 12 yields:

$$C_{mem}^N = C_{tot} \cdot \left( {1 - \alpha {\text{ }}} \right) \cdot \frac{{P_0^N {\text{ }}r}}{{1 + P_0^N {\text{ }}r}}{\text{ }}$$
(13)
$$C_{mem}^I = C_{tot} {\text{ }}\alpha \frac{{P_0^I r exp \left[ { - \Phi \left( {\sigma _{mem} + \sigma _D^\# } \right)} \right]}}{{1 + P_0^I r exp \left[ { - \Phi \left( {\sigma _{mem} + \sigma _D^\# } \right)} \right]}}\;,$$
(14)

which takes into account the Coulombic electrostatic contributions from both σ D and σ mem. The superscript I denotes the deprotonated form, X, for an acidic drug and the protonated form, XH, for a basic drug (cf. Eqs. 7 and 8). All concentrations are defined relative to the total suspension volume. Combining Eqs. 10 and 14 finally yields the drug-dependent surface charge density:

$$\sigma _D \approx \frac{{z_D e_0 C_{tot} \alpha }}{{C_L A_L }} \cdot \frac{{P_0^I r exp \left[ { - \Phi \left( {\sigma _{mem} + \sigma _D^\# } \right)} \right]}}{{1 + P_0^I r exp\left[ { - \Phi \left( {\sigma _{mem} + \sigma _D^\# } \right)} \right]}}\quad .$$
(15)

The procedure is applicable at any pH value and ideally should involve the entire titration curve. σ D is a function of Φ (or ψ) and vice versa, i.e. they are interdependent. The equation must thus be solved in a self-consistent fashion, and typically numerically. (We used Mathcad employing Secant and Mueller method for numerical solving.)

The Debye ion screening length, λ D, is a property of the electrolyte solution and is given for 1:1 electrolytes by:

$$\lambda _D = \sqrt {\frac{{\varepsilon _0 \varepsilon _r k_B T}}{{2000{\text{ }}e_0 ^2 N_A C_{el} }}} \quad .$$
(16)

ε 0 is the permittivity of free space (8.8542 × 10−12 As/Vm), ε r the dielectric constant at the drug binding site (an average value of 40 for the lipid head group was used), k B the Boltzmann constant (1.38 × 10−23 JK−1), T the absolute temperature, e 0 the elementary electric charge (1.602 × 10−19 C), N A Avogadro’s number (6.02205 × 1023 mol−1), C el the bulk molar electrolyte concentration.

The electrostatic potential, ψ, of a uniformly charged surface in contact with a 1:1 electrolyte is given within the framework of Gouy–Chapman approximation (38), as a function of the total surface charge density, σ = σ D + σ mem, by:

$$\psi \left( \sigma \right) = \frac{{2k_B T}}{{e_0 }}asinh\left( {\frac{{\lambda _D e_0 \sigma }}{{2\varepsilon _0 \varepsilon _r k_B T}}} \right)\quad .$$
(17)

σ is the surface charge density in Cm−2 and asinh the inverse hyperbolic sine (areasinushyperbolicus). The normalized dimensionless electrostatic potential, Φ, is defined as the ratio of electrostatic potential energy, ze 0 ψ, and thermal energy, k B T:

$$\Phi \left( \sigma \right) = \frac{{ze_0 {\text{ }}\psi \left( \sigma \right)}}{{k_{\text{B}} T}}\quad .$$
(18)

Numeric approximations to Eqs. 16 and 18 are given in Table V.

Table V Numeric Approximations to Eqs. 16 and 18 used for Calculating of the Debye–Hückel Screening Length, λ D, and the Normalized Electrostatic Potential, Φ, in a 1:1 Electrolyte

According to the Gouy–Chapman model, the relationship between the electrostatic potential ψ(x) at distance x from a uniformly charged surface and the electrostatic surface potential ψ(x = 0), is:

$$x = ln \left\{ {\frac{{tanh\left[ {{{e_0 \psi \left( {x = 0,\sigma } \right)} \mathord{\left/{\vphantom {{e_0 \psi \left( {x = 0,\sigma } \right)} {4k_B T}}} \right.\kern-\nulldelimiterspace} {4k_B T}}} \right]}}{{tanh\left[ {{{e_0 \psi \left( {x,\sigma } \right)} \mathord{\left/{\vphantom {{e_0 \psi \left( {x,\sigma } \right)} {4k_B T}}} \right.\kern-\nulldelimiterspace} {4k_B T}}} \right]}}} \right\} \cdot \lambda _D \quad .$$
(19)

This provides means for estimating the effective distance between the lipid and the drug charges in a membrane.

The electrostatic correction described in this article allows only for the Coulombic, i.e. charge–charge interactions. Other contributions, such as hydration (polarity) effects, can be influential as well. If they are not small, such interactions should be considered, following the basic, self-consistent approach described in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsayed, M.M.A., Vierl, U. & Cevc, G. Accurate Potentiometric Determination of Lipid Membrane–Water Partition Coefficients and Apparent Dissociation Constants of Ionizable Drugs: Electrostatic Corrections. Pharm Res 26, 1332–1343 (2009). https://doi.org/10.1007/s11095-009-9842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9842-1

KEY WORDS

Navigation