Skip to main content

Advertisement

Log in

Inflammatory Response and Barrier Properties of a New Alveolar Type 1-Like Cell Line (TT1)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the inflammatory response and barrier formation of a new alveolar type 1-like (transformed type I; TT1) cell line to establish its suitability for toxicity and drug transport studies.

Methods

TT1 and A549 cells were challenged with lipopolysaccharide (LPS). Secretion of inflammatory mediators was quantified by ELISA. The barrier properties of TT1 cells were evaluated by transepithelial electrical resistance (TEER), fluorescein sodium (flu-Na) apparent permeability (P app) and staining of zona occludens-1 (ZO-1).

Results

LPS stimulated similar levels of secretion of IL-6 and IL-8 in TT1 and A549 cells. TNF-α was not produced by either cell line. In contrast to A549 cells, TT1 cells did not secrete SLPI or elafin. TT1 cells produced maximal TEER of ~55 Ω cm2 and flu-Na P app of ~6.0 × 10−6 cm/s. ZO-1 staining was weak and discontinuous. Attempts to optimise culture conditions did not increase the barrier properties of the TT1 cell layers.

Conclusions

The TT1 cell line models the alveolar inflammatory response to LPS challenge and provides a valuable complement to cell lines currently used in toxicity assays. However, under the experimental conditions used the TT1 cell line did not form the highly restrictive tight junctions which exist in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

AT1:

alveolar type 1

AT2:

alveolar type 2

flu-Na:

fluorescein sodium

P app :

apparent permeability coefficient

SLPI:

secretory leukoprotease inhibitor

TEER:

transepithelial resistance

TT1:

transformed type 1

ZO-1:

zona occludens protein-1

References

  1. J. D. Crapo, B. E. Barry, P. Gehr, M. Bachofen, and E. R. Weibel. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir Dis. 126:332–337 (1982).

    PubMed  CAS  Google Scholar 

  2. J. M. Cheek, K. J. Kim, and E. D. Crandall. Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am. J. Physiol. 256:C688–693 (1989).

    PubMed  CAS  Google Scholar 

  3. A. N. Dodoo, S. S. Bansal, D. J. Barlow, F. Bennet, R. C. Hider, A. B. Lansley, M. J. Lawrence, and C. Marriott. Use of alveolar cell monolayers of varying electrical resistance to measure pulmonary peptide transport. J. Pharm. Sci. 89:223–231 (2000). doi:10.1002/(SICI)1520-6017(200002)89:2<223::AID-JPS9>3.0.CO;2-R.

    Article  PubMed  CAS  Google Scholar 

  4. Y. Matsukawa, H. Yamahara, F. Yamashita, V. H. Lee, E. D. Crandall, and K. J. Kim. Rates of protein transport across rat alveolar epithelial cell monolayers. J. Drug Target. 7:335–342 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. M. D. Johnson, J. H. Widdicombe, L. Allen, P. Barbry, and L. G. Dobbs. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc. Natl. Acad. Sci. U. S. A. 99:1966–1971 (2002) doi:10.1073/pnas.042689399.

    Article  PubMed  CAS  Google Scholar 

  6. H. Fehrenbach. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir. Res. 2:33–46 (2001) doi:10.1186/rr36.

    Article  PubMed  CAS  Google Scholar 

  7. G. Diamond, D. Legarda, and L. K. Ryan. The innate immune response of the respiratory epithelium. Immunol. Rev. 173:27–38 (2000) doi:10.1034/j.1600-065X.2000.917304.x.

    Article  PubMed  CAS  Google Scholar 

  8. E. L. Roggen, N. K. Soni, and G. R. Verheyen. Respiratory immunotoxicity: an in vitro assessment. Toxicol. In Vitro. 20:1249–1264 (2006) doi:10.1016/j.tiv.2006.03.009.

    Article  PubMed  CAS  Google Scholar 

  9. S. J. Kemp, A. J. Thorley, J. Gorelik, M. J. Seckl, M. J. O’Hare, A. Arcaro, Y. Korchev, P. Goldstraw, and T. D. Tetley. Immortalisation of human alveolar epithelial cells to investigate nanoparticle uptake. Am. J. Respir. Cell. Mol. Biol. 39:591–597 (2008) doi:10.1165/rcmb.2007-0334OC.

    Article  PubMed  CAS  Google Scholar 

  10. K. J. Kim, Z. Borok, and E. D. Crandall. A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm. Res. 18:253–255 (2001) doi:10.1023/A:1011040824988.

    Article  PubMed  CAS  Google Scholar 

  11. F. Blank, B. M. Rothen-Rutishauser, S. Schurch, and P. Gehr. An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J. Aerosol. Med. 19:392–405 (2006) doi:10.1089/jam.2006.19.392.

    Article  PubMed  Google Scholar 

  12. L. Horalkova, S. Endter, R. Koslowski, and C. Ehrhardt. Characteristics of the rat alveolar epithelial type I-like cell line R3/1 for use as an in vitro model of pulmonary drug disposition. Eur. J. Pharm. Sci. (2008), doi:10.1016/j.ejps.2008.11.010

  13. R. Koslowski, K. Barth, A. Augstein, T. Tschernig, G. Bargsten, M. Aufderheide, and M. Kasper. A new rat type I-like alveolar epithelial cell line R3/1: bleomycin effects on caveolin expression. Histochem. Cell. Biol. 121:509–519 (2004) doi:10.1007/s00418-004-0662-4.

    Article  PubMed  CAS  Google Scholar 

  14. A. Luhrmann, G. Bargsten, M. Kuzu, R. Koslowski, R. Pabst, and T. Tschernig. The alveolar epithelial type I-like cell line as an adequate model for leukocyte migration studies in vitro. Exp. Toxicol. Pathol. 58:277–283 (2007) doi:10.1016/j.etp.2006.09.002.

    Article  PubMed  CAS  Google Scholar 

  15. M. P. Steele, R. A. Levine, M. Joyce-Brady, and J. S. Brody. A rat alveolar type II cell line developed by adenovirus 12SE1A gene transfer. Am. J. Respir. Cell. Mol. Biol. 6:50–56 (1992).

    PubMed  CAS  Google Scholar 

  16. K. J. Kim. Models for investigation of peptide and protein transport across cultured mammalian respiratory epithelial barriers. In R. T. Borchardt (ed.), Models for Assessing Drug Absorption and Metabolism, Plenum, New York, 1996, pp. 325–346.

    Google Scholar 

  17. A. Steimer, H. Franke, E. Haltner-Ukomado, M. Laue, C. Ehrhardt, and C.M. Lehr. Monolayers of porcine alveolar epithelial cells in primary culture as an in vitro model for drug absorption studies. Eur. J. Pharm. Biopharm. 66:372–382 (2007) doi:10.1016/j.ejpb.2006.11.006.

    Article  PubMed  CAS  Google Scholar 

  18. M. Bur, H. Huwer, C. M. Lehr, N. Hagen, M. Guldbrandt, K. J. Kim, and C. Ehrhardt. Assessment of transport rates of proteins and peptides across primary human alveolar epithelial cell monolayers. Eur. J. Pharm. Sci. 28:196–203 (2006) doi:10.1016/j.ejps.2006.02.002.

    Article  PubMed  CAS  Google Scholar 

  19. K. J. Elbert, U. F. Schafer, H. J. Schafers, K. J. Kim, V. H. Lee, and C. M. Lehr. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm. Res. 16:601–608 (1999) doi:10.1023/A:1018887501927.

    Article  PubMed  CAS  Google Scholar 

  20. M. I. Hermanns, R. E. Unger, K. Kehe, K. Peters, and C. J. Kirkpatrick. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab. Invest. 84:736–752 (2004) doi:10.1038/labinvest.3700081.

    Article  PubMed  CAS  Google Scholar 

  21. A. S. Fanning, B. J. Jameson, L. A. Jesaitis, and J. M. Anderson. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273:29745–29753 (1998) doi:10.1074/jbc.273.45.29745.

    Article  PubMed  CAS  Google Scholar 

  22. G. Imanidis, C. Waldner, C. Mettler, and H. Leuenberger. An improved diffusion cell design for determining drug transport parameters across cultured cell monolayers. J. Pharm. Sci. 85:1196–1203 (1996) doi:10.1021/js960102g.

    Article  PubMed  CAS  Google Scholar 

  23. Q. M. Ningand, and X. R. Wang. Response of alveolar type II epithelial cells to mechanical stretch and lipopolysaccharide. Respiration. 74:579–585 (2007) doi:10.1159/000101724.

    Article  CAS  Google Scholar 

  24. C. Schulz, L. Farkas, K. Wolf, K. Kratzel, G. Eissner, and M. Pfeifer. Differences in LPS-induced activation of bronchial epithelial cells (BEAS-2B) and type II-like pneumocytes (A-549). Scand. J. Immunol. 56:294–302 (2002) doi:10.1046/j.1365-3083.2002.01137.x.

    Article  PubMed  CAS  Google Scholar 

  25. C. Monteiller, L. Tran, W. MacNee, S. Faux, A. Jones, B. Miller, and K. Donaldson. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup. Environ. Med. 64:609–615 (2007) doi:10.1136/oem.2005.024802.

    Article  PubMed  CAS  Google Scholar 

  26. C. M. Sayes, K. L. Reed, and D. B. Warheit. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97:163–180 (2007) doi:10.1093/toxsci/kfm018.

    Article  PubMed  CAS  Google Scholar 

  27. C. C. dos Santos, B. Han, C. F. Andrade, X. Bai, S. Uhlig, R. Hubmayr, M. Tsang, M. Lodyga, S. Keshavjee, A. S. Slutsky, and M. Liu. DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFalpha, LPS, and cyclic stretch. Physiol. Genomics. 19:331–342 (2004) doi:10.1152/physiolgenomics.00153.2004.

    Article  PubMed  CAS  Google Scholar 

  28. A. J. Thorley, P. A. Ford, M. A. Giembycz, P. Goldstraw, A. Young, and T. D. Tetley. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages. J. Immunol. 178:463–473 (2007).

    PubMed  CAS  Google Scholar 

  29. J. M. Sallenave. Antimicrobial activity of antiproteinases. Biochem. Soc. Trans. 30:111–115 (2002) doi:10.1042/BST0300111.

    Article  PubMed  CAS  Google Scholar 

  30. P. S. Hiemstra, R. J. Maassen, J. Stolk, R. Heinzel-Wieland, G. J. Steffens, and J. H. Dijkman. Antibacterial activity of antileukoprotease. Infect. Immun. 64:4520–4524 (1996).

    PubMed  CAS  Google Scholar 

  31. A. J. Simpson, A. I. Maxwell, J. R. Govan, C. Haslett, and J. M. Sallenave. Elafin (elastase-specific inhibitor) has anti-microbial activity against Gram-positive and Gram-negative respiratory pathogens. FEBS Lett. 452:309–313 (1999) doi:10.1016/S0014-5793(99)00670-5.

    Article  PubMed  CAS  Google Scholar 

  32. L. Bingle, T. D. Tetley, and C. D. Bingle. Cytokine-mediated induction of the human elafin gene in pulmonary epithelial cells is regulated by nuclear factor-kappaB. Am. J. Respir. Cell. Mol. Biol. 25:84–91 (2001).

    PubMed  CAS  Google Scholar 

  33. J. M. Sallenave, J. Shulmann, J. Crossley, M. Jordana, and J. Gauldie. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am. J. Respir. Cell. Mol. Biol. 11:733–741 (1994).

    PubMed  CAS  Google Scholar 

  34. P. A. Dickinson, J. P. Evans, S. J. Farr, I. W. Kellaway, T. P. Appelqvist, A. C. Hann, and R. J. Richards. Putrescine uptake by alveolar epithelial cell monolayers exhibiting differing transepithelial electrical resistances. J. Pharm. Sci. 85:1112–1116 (1996) doi:10.1021/js9504898.

    Article  PubMed  CAS  Google Scholar 

  35. C. I. Grainger, L. L. Greenwell, D. J. Lockley, G. P. Martin, and B. Forbes. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm. Res. 23:1482–1490 (2006) doi:10.1007/s11095-006-0255-0.

    Article  PubMed  CAS  Google Scholar 

  36. W. Yang, J. I. Peters, and R. O. Williams III. Inhaled nanoparticles—a current review. Int. J. Pharm. 356:239–247 (2008) doi:10.1016/j.ijpharm.2008.02.011.

    Article  PubMed  CAS  Google Scholar 

  37. P. G. A. Rogueda, and D. Traini. The nanoscale in pulmonary delivery. Part 1: deposition, fate toxicology and effects. Expert Opin. Drug Deliv. 4(6):595–606.

  38. U. B. Endter, N. Daum, H. Huwer, C. M. Lehr, M. Gumbleton, and C. Ehrhardt. P-glycoprotein (MDR1) functional activity in human alveolar epithelial cell monolayers. Cell Tissue. Res. 328:77–84 (2007) doi:10.1007/s00441-006-0346-6.

    Article  PubMed  CAS  Google Scholar 

  39. D. C. Gruenert, C. B. Basbaum, M. J. Welsh, M. Li, W. E. Finkbeiner, and J. A. Nadel. Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc. Natl. Acad. Sci. U. S. A. 85:5951–5955 (1988) doi:10.1073/pnas.85.16.5951.

    Article  PubMed  CAS  Google Scholar 

  40. D. M. Jefferson, J. D. Valentich, F. C. Marini, S. A. Grubman, M. C. Iannuzzi, H. L. Dorkin, M. Li, K. W. Klinger, and M. J. Welsh. Expression of normal and cystic fibrosis phenotypes by continuous airway epithelial cell lines. Am. J. Physiol. 259:L496–505 (1990).

    PubMed  CAS  Google Scholar 

  41. U. Hopfer, J. W. Jacobberger, D. C. Gruenert, R. L. Eckert, P. S. Jat, and J. A. Whitsett. Immortalization of epithelial cells. Am. J. Physiol. 270:C1–11 (1996).

    PubMed  CAS  Google Scholar 

  42. K. Lee, K. Choi, and O. M. Quellette. Use of exogenous hTERT to immortalize primary human cells. Cytotechnology. 45:33–38 (2004) doi:10.1007/10.1007/s10616-004-5123-3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

EHJ van den Bogaard was supported by a grant from the Astma Fonds, The Netherlands. AJ Thorley was funded by Research Councils UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Forbes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Bogaard, E.H.J., Dailey, L.A., Thorley, A.J. et al. Inflammatory Response and Barrier Properties of a New Alveolar Type 1-Like Cell Line (TT1). Pharm Res 26, 1172–1180 (2009). https://doi.org/10.1007/s11095-009-9838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9838-x

KEY WORDS

Navigation