Skip to main content

Advertisement

Log in

Characteristics of rhVEGF Release from Topical Hydrogel Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study recombinant human vascular endothelial growth factor (rhVEGF), the release characteristics from topical gel formulations, and its interaction with the gelling agents.

Methods

The release kinetics were followed by quantifying rhVEGF that diffused into the receptor chamber of Franz cells. Analytical ultracentrifuge (AUC) was used to characterize the sedimentation velocity of rhVEGF experienced in the gel. The interactions were characterized by isothermal calorimetry (ITC), and rhVEGF conformation was assessed by circular dichroism (CD).

Results

The fraction of protein released was linear with the square root of time. The release rate constants did not show significant change within a wide range of bulk viscosities created by different concentrations of hydroxypropyl methylcellulose (HPMC) or MC gels. Sedimentation velocity determined by AUC generated comparable sedimentation coefficients of protein in these gels. AUC and ITC revealed no significant interaction between rhVEGF and HPMC and some change on secondary structure of the protein by Far UV CD, which was not the case with carboxymethyl cellulose (CMC).

Conclusions

Microviscosity, not bulk viscosity, was the key factor for the release of rhVEGF from cellulosic gels such as HPMC. Interaction between rhVEGF and CMC resulted in slower, and reduced amount of, release from the gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AUC:

analytical ultracentrifugation

CD:

circular dichroism

CMC:

sodium carboxymethylcellulose

FGF:

fibroblast growth factor

HPMC:

hydroxypropylmethylcellulose

ITC:

isothermal titration calorimetry

MC:

methylcellulose

PDGF:

platelet derived growth factor

rhVEGF:

recombinant human vascular endothelial growth factor

References

  1. Wang YJ, Shahrokh Z, Vemuri S, Eberlein G, Beylin I, Busch M. Characterization, stability, and formulations of basic fibroblast growth factor. Chapter 2 in Pearlman R, Wang YJ, editors. Pharmaceutical Biotechnology, Vol. 9, Formulation, characterization, and stability of protein drugs: case histories. Plenum, New York, 1996

  2. Haraguchi T, Okada K, Tabata Y, Maniwa Y, Hayashi Y, Okita Y. Controlled release of basic fibroblast growth factor from gelatin hydrogel sheet improves structural and physiological properties of vein graft in rat. Arterioscl Throm Vas. 2007;27:548–55.

    Article  CAS  Google Scholar 

  3. Volkin DB, Middaugh CR. The characterization, stabilization, and formulation of acidic fibroblast growth factor. Chapter 3 in Pearlman R, Wang YJ, editors. Pharmaceutical Biotechnology, Vol. 9, Formulation, characterization, and stability of protein drugs: case histories. Plenum, New York, 1996

  4. Cho Lee AR, Leem H, Lee J, Park KC. Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials. 2005;26:4670–6.

    Article  PubMed  Google Scholar 

  5. Grzybowski J, Oldak E, Antos-Bielska M, Janiak MK, Pojda Z. New cytokine dressings. I. Kinetics of the in vitro rhG-CSF, rhGM-CSF, and rhEGF release from the dressings. Int J Pharm. 1999;184:173–8.

    Article  CAS  PubMed  Google Scholar 

  6. Gu F, Amsden B, Neufeld R. Sustained delivery of vascular endothelial growth factor with alginate beads. J Controlled Release. 2004;96:463–72.

    Article  CAS  Google Scholar 

  7. Nauman JV, Campbell PG, Lanni F, Anderson JL. Diffusion of insulin-like growth factor-I and ribonuclease through fibrin gels. Biophys J. 2007;92:4444–50.

    Article  CAS  PubMed  Google Scholar 

  8. Puolakkainen P, Twardzik DR, Ranchalis JE, Pankey SC, Reed MJ, Gombotz WR. The enhancement in wound healing by transforming growth factor-β1 (TGF-β1) depends on the topical delivery system. J Surg Res. 1995;58:321–9.

    Article  CAS  PubMed  Google Scholar 

  9. Gobin AS, West JL. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnol Prog. 2003;19:1781–5.

    Article  CAS  PubMed  Google Scholar 

  10. Holland TA, Tabata Y, Mikos AG. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Controlled Release. 2005;101:111–25.

    Article  CAS  Google Scholar 

  11. Bourke SL, Al-Khalili M, Briggs T, Michniak BB, Kohn J, Poole-Warren LA. A photo-crosslinked poly (vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications. AAPS PharmSci. 2003;5(4):E33. doi:10.1208/ps050433.

    Article  PubMed  Google Scholar 

  12. Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58:1379–408.

    Article  CAS  PubMed  Google Scholar 

  13. Peppas N, Khare AR. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Delivery Rev. 1993;11:1–35.

    Article  CAS  Google Scholar 

  14. Regranex Gel® 0.01% (becaplermin) [package insert]. Raritan, NJ: Ortho-McNeil, Division of Ortho-McNeil-Janssen Pharmaceuticals, Inc. May 2008. Available at http://www.jnjgateway.com/public/USENG/REGRANEX_Full_Labeling_PI.pdf. Accessed August 20, 2008.

  15. Matuszewska B, Keogan M, Fisher DM, Sopper KA, Hoe C-M, Huber AC. Acidic fibroblast growth factor: evaluation of topical formulations in a diabetic mouse wound healing model. Pharm Res. 1994;11:65–71.

    Article  CAS  PubMed  Google Scholar 

  16. Ji JA, Borisov O, Ingham E, Ling V, Wang YJ. Compatibility of a protein topical gel with wound dressings. J Pharm Sci. 2009;98:595–605.

    Article  CAS  PubMed  Google Scholar 

  17. Shah AC, Nelson KG. Mass transport in dissolution kinetics. II: convective diffusion to assess role of viscosity under conditions of gravitational flow. J Pharm Sci. 1987;76:910–3.

    Article  CAS  PubMed  Google Scholar 

  18. Cheong LWS, Heng PWS, Wong LF. Relationship between polymer viscosity and drug release from a matrix system. Pharm Res. 1992;9:1510–4.

    Article  CAS  PubMed  Google Scholar 

  19. Gilbert JC, Hadgraft J, Bye A, Brookes LG. Drug release from Pluronic F-127 gels. Int J Pharm. 1986;32:223–8.

    Article  CAS  Google Scholar 

  20. Lu G, Jun HW. Diffusion studies of methotrexate in Carbopol and Poloxamer gels. Int J Pharm. 1998;160:1–9.

    Article  CAS  Google Scholar 

  21. de Smidt JH, Crommelin DJA. Viscosity measurement in aqueous polymer solution by dynamic light scattering. Int J Pharm. 1991;77:261–4.

    Article  Google Scholar 

  22. Suh H, Jun HW. Physicochemical and release studies of naproxen in poloxamer gels. Int J Pharm. 1996;129:13–20.

    Article  CAS  Google Scholar 

  23. Al-Khamis K, Davis SS, Hadgraft J. Microviscosity and drug release from topical gel formulations. Pharm Res. 1986;3:214–7.

    Article  CAS  Google Scholar 

  24. de Smidt JH, Offringa JCA, Crommelin DJA. Dissolution kinetics of theophylline in aqueous polymer solutions. Int J Pharm. 1991;77:255–9.

    Article  Google Scholar 

  25. Alvarez-Lorenzo C, Gómez-Amoza JL, Martínez-Pacheco R, Souto C, Concheiro A. Microviscosity of hydroxypropylcellulose gels as a basis for prediction of drug diffusion rates. Int J Pharm. 1999;180:91–103.

    Article  CAS  PubMed  Google Scholar 

  26. Deen WM. Transport in porous polymers. AIChE J. 1987;9:1409–16.

    Article  Google Scholar 

  27. Peppas NA, Lustig SR. Solute diffusion in hydrophilic network structures. In: Peppas NA, Peppas NA, editors. Hydrogels in medicine and pharmacy, Vol. 1. Boca Ration: CRC; 1987. p. 57–83.

    Google Scholar 

  28. Pitt C. The controlled parenteral delivery of polypeptides and proteins. Int J Pharm. 1990;59:173–96.

    Article  CAS  Google Scholar 

  29. Sniekers YH, van Donkelaar CC. Determining diffusion coefficients in inhomogeneous tissues using fluorescence recovery after photobleaching. Biophys J. 2005;89:1302–7.

    Article  CAS  PubMed  Google Scholar 

  30. Braeckmans K, Peeters L, Sanders NN, De Smedt SC, Demeester J. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J. 2003;85:2240–52.

    Article  CAS  PubMed  Google Scholar 

  31. Liang S, Xu J, Weng L, Dai H, Zhang X, Zhang L. Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J Controlled Release. 2006;115:189–96.

    Article  CAS  Google Scholar 

  32. Schachman HK. Ultracentrifugation in biochemistry. New York: Academic; 1959.

    Google Scholar 

  33. Hinz H-J. Thermodynamic data for biochemistry and biotechnology. Berlin: Springer-Verlag; 1986.

    Google Scholar 

  34. Provencher SW, Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981;20:33–7.

    Article  CAS  PubMed  Google Scholar 

  35. Dahl TC, Calderwood T, Bormeth A, Trimble L, Piepmeier E. Influence of physico-chemical properties of hydroxypropylmethylcellulose on naproxen release form sustained release matrix tablets. J Controlled Release. 1990;14:1–10.

    Article  CAS  Google Scholar 

  36. Peppas NA. Controlling protein diffusion in hydrogels. Chapter II.1 in Lee VHL, Hashida M, Mizushima Y, editors. Trends and future perspectives in peptide and protein drug delivery, Vol. 4. Boca Raton: CRC; 1995.

  37. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Delivery Rev. 2001;48:139–57.

    Article  CAS  Google Scholar 

  38. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.

    Article  CAS  PubMed  Google Scholar 

  39. Bosman I. Transdermal delivery of anticholinergic bronchodilators: methodological and clinical aspects. University of Groningen, PhD thesis, Chapter 5: 65–78 (1996)

  40. Fairbrother WJ, Champe MA, Christinger HW, Keyt BA, Starovasnik MA. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure. 1998;6:637–48.

    Article  CAS  PubMed  Google Scholar 

  41. Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, de Vos AM. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci USA. 1997;94:7192–7.

    Article  CAS  PubMed  Google Scholar 

  42. http://leonardo.fcu.um.es/macromol/programs/hydropro/hydropro.htm

  43. Cantor CR, Schimmel PR. Biophysical chemistry Part II: techniques for the study of biological structure and function. San Francisco: Freeman and Co.; 1980.

    Google Scholar 

  44. Amsden B. Diffusion within hydrogels. Mechanisms and models. Macromolecules. 1998;31:8382–95.

    Article  CAS  Google Scholar 

  45. Hennink WE, Talsma H, Borchert JCH, DeSmedt SC, Demeester J. Controlled release of proteins from dextran hydrogels. J Controlled Release. 1996;39(1):47–55.

    Article  CAS  Google Scholar 

  46. Freire E, Schon A, Velazques-Campoy A. Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol. 2009;455:127–55.

    Article  CAS  PubMed  Google Scholar 

  47. Brandner B, Kurkela R, Vihko P, Kungl AJ. Investigating the effect of rhVEGF glycosylation on glycosaminoglycan binding and protein unfolding. Biochem Biophys Res Commun. 2006;340:836–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sreerama N, Woody RW. Computation and analysis of protein circular dichroism spectra. Methods Enzymol. 2004;383:318–51.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson CW. Protein secondary structure and circular dichroism: a practical guide. Proteins: Structure, Funct Integr Genomics. 1990;7:205–14.

    Article  CAS  Google Scholar 

  50. Chu PI, Doyle D. Development and evaluation of a laboratory-scale apparatus to simulate the scale-up of a sterile semisolid and effects of manufacturing parameters on product viscosity. Pharm Dev Technol. 1999;4:553–9.

    Article  CAS  PubMed  Google Scholar 

  51. Jennings RN, Yang B, Protter A, Wang YJ. Hydrogel composition for the controlled release administration of growth factor. US Patent 6,331,309 (2001)

  52. Ji JA, Ingham E, Wang YJ. Effect of EDTA and methionine on preventing viscosity loss of cellulose-based gel. AAPS PharmSciTech. 2008;10:678–82.

    Article  Google Scholar 

  53. Shahrokh Z, Beylin I, Eberlein G, Busch M, Kang L, Wong A, et al. Cellulose cleaving activity from E. coli detected in topical formulations of recombinant proteins. BioPharm. 1995;8:32–8.

    CAS  Google Scholar 

  54. Mach H, Volkin DB, Burke CJ, Middaugh CR, Linhardt RJ, et al. Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry. 1993;32:5480–9.

    Article  CAS  PubMed  Google Scholar 

  55. Basumallick L, Ji JA, Naber N, Wang YJ. The fate of free radicals in a cellulose based hydrogel: detection by electron paramagnetic resonance spectroscopy. J Pharm Sci. 2008;98:2464–71.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sherry Martin-Moe for supporting this study, Ms. Linda Khym for editing the manuscript, Dr. Tom Patapoff for helpful discussions, and Dr. Ann Daugherty and Ms. Erika Ingham for collaborating on the development of the gel formulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyan A. Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, J.A., Liu, J., Shire, S.J. et al. Characteristics of rhVEGF Release from Topical Hydrogel Formulations. Pharm Res 27, 644–654 (2010). https://doi.org/10.1007/s11095-009-0039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0039-4

KEY WORDS

Navigation