Skip to main content
Log in

Development of a New Predictive Model for Interactions with Human Cytochrome P450 2A6 Using Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) Approach

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of this investigation was to yield a generalized in silico model to quantitatively predict CYP2A6-substrates/inhibitors interactions to facilitate drug discovery.

Methods

The newly invented pharmacophore ensemble/support vector machine (PhE/SVM) scheme was employed to generate the prediction model based on the data compiled from the literature.

Results

The predictions by the PhE/SVM model are in good agreement with the experimental observations for those molecules in the training set (n = 24, r 2 = 0.94, q 2 = 0.85, RMSE = 0.30) and the test set (n = 9, r 2 = 0.96, RMSE = 0.29). In addition, this in silico model performed equally well for those molecules in the external validation sets, namely one set of benzene and naphthalene derivatives (n = 45, r 2 = 0.81, RMSE = 0.46) and one set of amine neurotransmitters (n = 4, r 2 = 0.98, RMSE = 0.32). Furthermore, when compared with crystal structures, the calculated results are consistent with the published CYP2A6-substrate co-complex structure and the plasticity nature of CYP2A6 is also revealed.

Conclusions

This PhE/SVM model is an accurate and robust model and can be utilized for predicting interactions with CYP2A6, high-throughput screening and data mining to facilitate drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

AD:

Application domain

PhE:

Pharmacophore ensemble

SVM:

Support vector machine

References

  1. D. F. Lewis, P. P. Tamburini, and G. G. Gibson. The interaction of a homologous series of hydrocarbons with hepatic cytochrome P-450. Molecular orbital-derived electronic and structural parameters influencing the haemoprotein spin state. Chem. Biol. Interact. 58:289–299 (1986). doi:10.1016/S0009-2797(86)80104-1.

    Article  PubMed  CAS  Google Scholar 

  2. G. F. Roberts, I. Mehta, and M. Murray. Inhibition of oxidative drug metabolism by orphenadrine: in vitro and in vivo evidence for isozyme-specific complexation of cytochrome P-450 and inhibition kinetics. Mol. Pharmacol. 35:736–743 (1989).

    Google Scholar 

  3. L. M. Forrester, C. J. Henderson, M. J. Glance, D. J. Back, B. K. Park, S. E. Ball, N. R. Kitteringham, A. W. McLaren, J. S. Miles, and P. Skett. Relative expression of cytochrome P450 isoenzymes in human liver and association with the metabolism of drugs and xenobiotics. Biochem. J. 281:359–368 (1992).

    PubMed  CAS  Google Scholar 

  4. M. VandenBranden, S. A. Wrighton, S. Ekins, J. S. Gillespie, S. N. Binkley, B. J. Ring, M. G. Gadberry, D. C. Mullins, S. C. Strom, and C. B. Jensen. Alterations of the catalytic activities of drug-metabolizing enzymes in cultures of human liver slices. Drug Metab. Dispos. 26:1063–1068 (1998).

    PubMed  CAS  Google Scholar 

  5. D. F. Lewis. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: a compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr. Med. Chem. 10:1955–1972 (2003). doi:10.2174/0929867033456855.

    Article  PubMed  CAS  Google Scholar 

  6. S. Micuda, L. Mundlova, E. Anzenbacherova, P. Anzenbacher, J. Chladek, L. Fuksa, and J. Martinkova. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur. J. Clin. Pharmacol. 60:583–589 (2004). doi:10.1007/s00228-004-0825-1.

    Article  PubMed  CAS  Google Scholar 

  7. J. P. Villeneuve, and V. Pichette. Cytochrome P450 and liver diseases. Curr. Drug Metab. 5:273–282 (2004). doi:10.2174/1389200043335531.

    Article  PubMed  CAS  Google Scholar 

  8. R. L. Walsky, and R. S. Obach. Validated assays for human cytochrome P450 activities. Drug Metab. Dispos. 32:647–660 (2004). doi:10.1124/dmd.32.6.647.

    Article  PubMed  CAS  Google Scholar 

  9. T. Niwa, T. Shiraga, I. Ishii, A. Kagayama, and A. Takagi. Contribution of human hepatic cytochrome P450 isoforms to the metabolism of psychotropic drugs. Biol. Pharm. Bull. 28:1711–1716 (2005). doi:10.1248/bpb.28.1711.

    Article  PubMed  CAS  Google Scholar 

  10. V. G. Divakaran, and A. T. Murugan. Polypharmacy: an undervalued component of complexity in the care of elderly patients. Eur. J. Intern. Med. 19:225–226 (2008). doi:10.1016/j.ejim.2007.08.002.

    Article  PubMed  Google Scholar 

  11. D. W. Nebert, and D. W. Russell. Clinical importance of the cytochromes P450. Lancet 360:1155–1162 (2002). doi:10.1016/S0140-6736(02)11203-7.

    Article  PubMed  CAS  Google Scholar 

  12. S. G. Bell, N. Hoskins, C. J. C. Whitehouse, and L. L. Wong. Design and engineering of cytochrome P450 systems. In A. Sigel, H. Sigel, and R. K. O. Sigel (eds.), The Ubiquitous Roles of Cytochrome P450 Proteins, Vol. 3, Wiley, Chichester, 2007, pp. 437–476.

    Chapter  Google Scholar 

  13. T. Shimada, H. Yamazaki, and F. P. Guengerich. Ethnic-related differences in coumarin 7-hydroxylation activities catalyzed by cytochrome P4502A6 in liver microsomes of Japanese and Caucasian populations. Xenobiotica 26:395–403 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. J. M. Tredger, and S. Stoll. Cytochromes p450—their impact on drug treatment. Hosp. Pharm. 9:167–173 (2002).

    Google Scholar 

  15. C. Rodriguez-Antona, and M. Ingelman-Sundberg. Cytochrome P450 pharmacogenetics and cancer. Oncogene 25:1679–1691 (2006). doi:10.1038/sj.onc.1209377.

    Article  PubMed  CAS  Google Scholar 

  16. Y. Kaida, N. Inui, T. Suda, H. Nakamura, H. Watanabe, and K. Chida. The CYP2A6*4 allele is determinant of S-1 pharmacokinetics in Japanese patients with non-small-cell lung cancer. Clin. Pharmacol. Ther. 83:589–594 (2008). doi:10.1038/sj.clpt.6100484.

    Article  PubMed  CAS  Google Scholar 

  17. K. Ikeda, K. Yoshisue, E. Matsushima, S. Nagayama, K. Kobayashi, C. A. Tyson, K. Chiba, and Y. Kawaguchi. Bioactivation of Tegafur to 5-Fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin. Cancer Res. 6:4409–4415 (2000).

    PubMed  CAS  Google Scholar 

  18. J. Hukkanen, P. Jacob III, and N. L. Benowitz. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 57:79–115 (2005). doi:10.1124/pr.57.1.3.

    Article  PubMed  CAS  Google Scholar 

  19. A. M. Lee, and R. F. Tyndale. Drugs and genotypes: how pharmacogenetic information could improve smoking cessation treatment. J. Psychopharmacol. 20:7–14 (2006). doi:10.1177/1359786806066039.

    Article  PubMed  Google Scholar 

  20. M. K. Ho, and R. F. Tyndale. Overview of the pharmacogenomics of cigarette smoking. Pharmacogenomics. J. 7:81–98 (2007). doi:10.1038/sj.tpj.6500436.

    Article  PubMed  CAS  Google Scholar 

  21. O. Pelkonen, A. Rautio, H. Raunio, and M. Pasanen. CYP2A6: a human coumarin 7-hydroxylase. Toxicology 144:139–147 (2000). doi:10.1016/S0300-483X(99)00200-0.

    Article  PubMed  CAS  Google Scholar 

  22. J. A. G. Agúndez. Cytochrome P450 gene polymorphism and cancer. Curr. Drug Metab. 5:211–224 (2004). doi:10.2174/1389200043335621.

    Article  PubMed  Google Scholar 

  23. D. W. Nebert, and T. P. Dalton. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer 6:947–960 (2006). doi:10.1038/nrc2015.

    Article  PubMed  CAS  Google Scholar 

  24. A. Poso, J. Gynther, and R. Juvonen. A comparative molecular field analysis of cytochrome P450 2A5 and 2A6 inhibitors. J. Comput.-Aided Mol. Des. 15:195–202 (2001). doi:10.1023/A:1008102217770.

    Article  PubMed  CAS  Google Scholar 

  25. A. Asikainen, J. Tarhanen, A. Poso, M. Pasanen, E. Alhava, and R. O. Juvonen. Predictive value of comparative molecular field analysis modelling of naphthalene inhibition of human CYP2A6 and mouse CYP2A5 enzymes. Toxicol. Vitro 17:449–455 (2003). doi:10.1016/S0887-2333(03)00065-1.

    Article  CAS  Google Scholar 

  26. M. Rahnasto, H. Raunio, A. Poso, C. Wittekindt, and R. O. Juvonen. Quantitative structure–activity relationship analysis of inhibitors of the nicotine metabolizing CYP2A6 enzyme. J. Med. Chem. 48:440–449 (2005). doi:10.1021/jm049536b.

    Article  PubMed  CAS  Google Scholar 

  27. M. Rahnasto, C. Wittekindt, R. O. Juvonen, M. Turpeinen, A. Petsalo, O. Pelkonen, A. Poso, G. Stahl, H. D. Holtje, and H. Raunio. Identification of inhibitors of the nicotine metabolising CYP2A6 enzyme—an in silico approach. Pharmacogenomics. J. 8:328–338 (2008). doi:10.1038/sj.tpj.6500481.

    Article  PubMed  CAS  Google Scholar 

  28. D. F. V. Lewis, M. Dickins, B. G. Lake, P. J. Eddershaw, M. H. Tarbit, and P. S. Goldfarb. Molecular modelling of the human cytochrome P450 isoform CYP2A6 and investigations of CYP2A substrate selectivity. Toxicology 133:1–33 (1999). doi:10.1016/S0300-483X(98)00149-8.

    Article  PubMed  CAS  Google Scholar 

  29. D. F. V. Lewis. Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure. Xenobiotica 32:305–323 (2002). doi:10.1080/00498250110112015.

    Article  PubMed  CAS  Google Scholar 

  30. D. F. V. Lewis, B. G. Lake, M. Dickins, and P. S. Goldfarb. Homology modelling of CYP2A6 based on the CYP2C5 crystallographic template: enzyme–substrate interactions and QSARs for binding affinity and inhibition. Toxicol. in Vitro 17:179–190 (2003). doi:10.1016/S0887-2333(02)00132-7.

    Article  PubMed  CAS  Google Scholar 

  31. S. Sansen, M. H. Hsu, C. D. Stout, and E. F. Johnson. Structural insight into the altered substrate specificity of human cytochrome P450 2A6 mutants. Arch. Biochem. Biophys. 464:197–206 (2007). doi:10.1016/j.abb.2007.04.028.

    Article  PubMed  CAS  Google Scholar 

  32. R. Arimoto. Computational models for predicting interactions with cytochrome P450 enzyme. Curr. Top. Med. Chem. 6:1609–1618 (2006). doi:10.2174/156802606778108951.

    Article  PubMed  CAS  Google Scholar 

  33. A. M. Davis, and S. J. Teague. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed. Engl. 38:736–749 (1999). doi:10.1002/(SICI)1521-3773(19990315)38:6<736::AID-ANIE736>3.0.CO;2-R.

    Article  CAS  Google Scholar 

  34. C. F. Wong, and J. A. McCammon. Protein flexibility and computer-aided drug design. Annu. Rev. Pharmacol. Toxicol. 43:31–45 (2003). doi:10.1146/annurev.pharmtox.43.100901.140216.

    Article  PubMed  CAS  Google Scholar 

  35. M. G. McCammon, and C. V. Robinson. Structural change in response to ligand binding. Curr. Opin. Chem. Biol. 8:60–65 (2004). doi:10.1016/j.cbpa.2003.11.005.

    Article  PubMed  CAS  Google Scholar 

  36. A. Verras, I. D. Kuntz, and P. R. O. de Montellano. Cytochrome P450 enzymes: Computational approaches to substrate prediction. In D. C. Spellmeyer (ed.), Annual Reports in Computational Chemistry, Vol. 2, Elsevier, Oxford, UK, 2006, pp. 171–195.

    Google Scholar 

  37. T. L. Poulos, and Y. T. Meharenna. Structures of P450 proteins and their molecular phylogeny. In A. Sigel, H. Sigel, and R. K. O. Sigel (eds.), The Ubiquitous Roles of Cytochrome P450 Proteins, Vol. 3, Wiley, Chichester, 2007, pp. 57–96.

    Chapter  Google Scholar 

  38. M. Ekroos, and T. Sjögren. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. U. S. A. 103:13682–13687 (2006). doi:10.1073/pnas.0603236103.

    Article  PubMed  CAS  Google Scholar 

  39. Y. Zhao, M. A. White, B. K. Muralidhara, L. Sun, J. R. Halpert, and C. D. Stout. Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: Insight into P450 conformational plasticity and membrane interaction. J. Biol. Chem. 281:5973–5981 (2006). doi:10.1074/jbc.M511464200.

    Article  PubMed  CAS  Google Scholar 

  40. M. R. Wester, E. F. Johnson, C. Marques-Soares, P. M. Dansette, D. Mansuy, and C. D. Stout. Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 Å resolution: Evidence for multiple substrate binding modes. Biochemistry 42:6370–6379 (2003). doi:10.1021/bi0273922.

    Article  PubMed  CAS  Google Scholar 

  41. V. M. Popov, W. A. Yee, and A. C. Anderson. Towards in silico lead optimization: scores from ensembles of protein/ligand conformations reliably correlate with biological activity. Proteins 66:375–387 (2007). doi:10.1002/prot.21201.

    Article  PubMed  CAS  Google Scholar 

  42. J. K. Yano, M.-H. Hsu, K. J. Griffin, C. D. Stout, and E. F. Johnson. Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat. Struct. Mol. Biol. 12:822–823 (2005). doi:10.1038/nsmb971.

    Article  PubMed  CAS  Google Scholar 

  43. J. K. Yano, T. T. Denton, M. A. Cerny, X. Zhang, E. F. Johnson, and J. R. Cashman. Synthetic inhibitors of cytochrome P-450 2A6: inhibitory activity, difference spectra, mechanism of inhibition, and protein cocrystallization. J. Med. Chem. 49:6987–7001 (2006). doi:10.1021/jm060519r.

    Article  PubMed  CAS  Google Scholar 

  44. J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz, and J. Liang. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34:W116–W118 (2006). doi:10.1093/nar/gkl282.

    Article  PubMed  CAS  Google Scholar 

  45. I. B. Bersuker, M. K. Leong, J. E. Boggs, and R. S. Pearlman. A method of combined quantum mechanical (QM)/molecular mechanics (MM) treatment of large polyatomic systems with charge transfer between the QM and MM fragments. Int. J. Quantum Chem. 63:1051–1063 (1997).

    CAS  Google Scholar 

  46. R. A. Friesner, and V. Guallar. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 56:389–427 (2005). doi:10.1146/annurev.physchem.55.091602.094410.

    Article  PubMed  CAS  Google Scholar 

  47. M. K. Leong. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Chem. Res. Toxicol. 20:217–226 (2007). doi:10.1021/tx060230c.

    Article  PubMed  CAS  Google Scholar 

  48. B. Ma, M. Shatsky, H. J. Wolfson, and R. Nussinov. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci. 11:184–197 (2002). doi:10.1110/ps.21302.

    Article  PubMed  CAS  Google Scholar 

  49. M. K. Leong, and T.-H. Chen. Prediction of cytochrome P450 2B6-substrate interactions using pharmacophore ensemble/support vector machine (PhE/SVM) approach. Med. Chem. 4:396–406 (2008). doi:10.2174/157340608784872226.

    Article  PubMed  CAS  Google Scholar 

  50. T. J. Smith, A. M. Liao, Y. Liu, A. B. Jones, L. M. Anderson, and C. S. Yang. Enzymes involved in the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in patas monkey lung and liver microsomes. Carcinogenesis 18:1577–1584 (1997). doi:10.1093/carcin/18.8.1577.

    Article  PubMed  CAS  Google Scholar 

  51. R. O. Juvonen, J. Gynther, M. Pasanen, E. Alhava, and A. Poso. Pronounced differences in inhibition potency of lactone and non-lactone compounds for mouse and human coumarin 7-hydroxylases (CYP2A5 and CYP2A6). Xenobiotica 30:81–92 (2000). doi:10.1080/004982500237848.

    Article  PubMed  CAS  Google Scholar 

  52. M. Rahnasto, H. Raunio, A. Poso, and R. O. Juvonen. More potent inhibition of human CYP2A6 than mouse CYP2A5 enzyme activities by derivatives of phenylethylamine and benzaldehyde. Xenobiotica 33:529–539 (2003). doi:10.1080/0049825031000085979.

    Article  PubMed  CAS  Google Scholar 

  53. T. T. Denton, X. Zhang, and J. R. Cashman. Nicotine-related alkaloids and metabolites as inhibitors of human cytochrome P-450 2A6. Biochem. Pharmacol. 67:751–756 (2004). doi:10.1016/j.bcp.2003.10.022.

    Article  PubMed  CAS  Google Scholar 

  54. J. M. MacDougall, K. Fandrick, X. Zhang, S. Serafin, and J. R. Cashman. Inhibition of human liver microsomal (S)-nicotine oxidation by (−)-menthol and analogues. Chem. Res. Toxicol. 16:988–993 (2003). doi:10.1021/tx0340551.

    Article  PubMed  CAS  Google Scholar 

  55. F. P. Guengerich. Drug metabolism as catalyzed by human cytochrome P450 systems. In A. Sigel, H. Sigel, and R. K. O. Sigel (eds.), The Ubiquitous Roles of Cytochrome P450 Proteins, Vol. 3, Wiley, Chichester, 2007, pp. 561–589.

    Chapter  Google Scholar 

  56. G. Chang, W. C. Guida, and W. C. Still. An internal-coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 111:4379–4386 (1989). doi:10.1021/ja00194a035.

    Article  CAS  Google Scholar 

  57. I. Kolossvary, and W. C. Guida. Low mode search. An efficient, automated computational method for conformational analysis: application to cyclic and acyclic alkanes and cyclic peptides. J. Am. Chem. Soc. 118:5011–5019 (1996). doi:10.1021/ja952478m.

    Article  CAS  Google Scholar 

  58. W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112:6127–6129 (1990). doi:10.1021/ja00172a038.

    Article  CAS  Google Scholar 

  59. T. A. Halgren. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17:490–519 (1996). doi:10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  60. C.-C. Chang, and C.-J. Lin. LIBSVM: A Library for Support Vector Machines, version 2.81. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2005.

  61. V. Kecman. Learning and soft computing: support vector machines, neural networks and fuzzy logic models. MIT Press, Cambridge, MA, 2001.

    Google Scholar 

  62. L. Breiman, and P. Spector. Submodel selection and evaluation in regression: the X-random case. Int. Statist. Rev. 60:291–319 (1992). doi:10.2307/1403680.

    Article  Google Scholar 

  63. A. Golbraikh, and A. Tropsha. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput.-Aided Mol. Des. 16:357–369 (2002). doi:10.1023/A:1020869118689.

    Article  PubMed  CAS  Google Scholar 

  64. E. Higashi, M. Nakajima, M. Katoh, S. Tokudome, and T. Yokoi. Inhibitory effects of neurotransmitters and steroids on human CYP2A6. Drug Metab. Dispos. 35:508–514 (2007). doi:10.1124/dmd.106.014084.

    Article  PubMed  CAS  Google Scholar 

  65. R. Gnanadesikan, and J. R. Kettenring. Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics 28:81–124 (1972). doi:10.2307/2528963.

    Article  Google Scholar 

  66. A. C. Wallace, R. A. Laskowski, and J.M. Thornton. LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Prot. Eng. 8:127–134 (1995). doi:10.1093/protein/8.2.127.

    Article  CAS  Google Scholar 

  67. D. F. V. Lewis. On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics: towards the prediction of human P450 substrate specificity and metabolism. Biochem. Pharmacol. 60:293–306 (2000). doi:10.1016/S0006-2952(00)00335-X.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Council, Taiwan. Parts of calculations were performed at the National Center for High-Performance Computing, Taiwan. The authors are grateful to Dr. G. H. Hakimelahi for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max K. Leong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leong, M.K., Chen, YM., Chen, HB. et al. Development of a New Predictive Model for Interactions with Human Cytochrome P450 2A6 Using Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) Approach. Pharm Res 26, 987–1000 (2009). https://doi.org/10.1007/s11095-008-9807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9807-9

KEY WORDS

Navigation