Skip to main content

Advertisement

Log in

Targeted Delivery with Peptidomimetic Conjugated Self-Assembled Nanoparticles

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Peptides produce specific nanostructures, making them useful for targeting in biological systems but they have low bioavailability, potential immunogenicity and poor metabolic stability. Peptidomimetic self-assembled NPs can possess biological recognition motifs as well as providing desired engineering properties. Inorganic NPs, coated with self-assembled macromers for stability and anti-fouling, and conjugated with target-specific ligands, are advancing imaging from the anatomy-based level to the molecular level. Ligand conjugated NPs are attractive for cell-selective tumor drug delivery, since this process has high transport capacity as well as ligand dependent cell specificity. Peptidomimetic NPs can provide stronger interaction with surface receptors on tumor cells, resulting in higher uptake and reduced drug resistance. Self-assembled NPs conjugated with peptidomimetic antigens are ideal for sustained presentation of vaccine antigens to dendritic cells and subsequent activation of T cell mediated adaptive immune response. Self-assembled NPs are a viable alternative to encapsulation for sustained delivery of proteins in tissue engineering. Cell penetrating peptides conjugated to NPs are used as intracellular delivery vectors for gene expression and as transfection agents for plasmid delivery. In this work, synthesis, characterization, properties, immunogenicity, and medical applications of peptidomimetic NPs in imaging, tumor delivery, vaccination, tissue engineering, and intracellular delivery are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Pantarotto, C. D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J. P. Briand, S. Muller, M. Prato, and A. Bianco. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10(10):961–966 (2003). doi:10.1016/j.chembiol.2003.09.011.

    PubMed  CAS  Google Scholar 

  2. T. Sasaki, N. Iwasaki, K. Kohno, M. Kishimoto, T. Majima, S. I. Nishimura, and A. Minami. Magnetic nanoparticles for improving cell invasion in tissue engineering. J. Biomed. Mater. Res. A. 86A(4):969–978 (2008). doi:10.1002/jbm.a.31724.

    CAS  Google Scholar 

  3. T. Nagata, T. Aoshi, M. Uchijima, and Y. Koide. In vivo hierarchy of individual T-cell epitope-specific helper T-cell subset against an intracellular bacterium. Vaccine. 26(40):5123–5127 (2008). doi:10.1016/j.vaccine.2008.03.061.

    PubMed  CAS  Google Scholar 

  4. S. P. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. J. Studer. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2(8):817–822 (2002). doi:10.1021/nl0255193.

    CAS  Google Scholar 

  5. J. M. Nam, C. S. Thaxton, and C. A. Mirkin. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301(5641):1884–1886 (2003). doi:10.1126/science.1088755.

    PubMed  CAS  Google Scholar 

  6. R. Mahtab, J. P. Rogers, and C. J. Murphy. Protein-sized quantum-dot luminescence can distinguish between straight, bent, and kinked oligonucleotides. J. Am. Chem. Soc. 117(35):9099–9100 (1995). doi:10.1021/ja00140a040.

    CAS  Google Scholar 

  7. Y. Jing, L. R. Moore, P. S. Williams, J. J. Chalmers, S. S. Farag, B. Bolwell, and M. Zborowski. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol. Bioeng. 96(6):1139–1154 (2007). doi:10.1002/bit.21202.

    PubMed  CAS  Google Scholar 

  8. X. Montet, R. Weissleder, and L. Josephson. Imaging pancreatic cancer with a peptide–nanoparticle conjugate targeted to normal pancreas. Bioconj. Chem. 17(4):905–911 (2006). doi:10.1021/bc060035+.

    CAS  Google Scholar 

  9. W. J. Parak, R. Boudreau, M. Le Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C. Williams, A. P. Alivisatos, and C. Larabell. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 14(12):882–885 (2002). doi:10.1002/1521-4095(20020618)14:12<882::AID-ADMA882>3.0.CO;2-Y.

    CAS  Google Scholar 

  10. M. J. Vicent, and R. Duncan. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol. 24(1):39–47 (2006). doi:10.1016/j.tibtech.2005.11.006.

    PubMed  CAS  Google Scholar 

  11. S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA. 95(8):4607–4612 (1998). doi:10.1073/pnas.95.8.4607.

    PubMed  CAS  Google Scholar 

  12. S. Unezaki, K. Maruyama, J. Hosoda, I. Nagae, Y. Koyanagi, M. Nakata, O. Ishida, M. Iwatsuru, and S. Tsuchiya. Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int. J. Pharmaceut. 144(1):11–17 (1996). doi:10.1016/S0378-5173(96)04674-1.

    CAS  Google Scholar 

  13. J. H. Lee, Y. M. Huh, Y. Jun, J. Seo, J. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, and J. Cheon. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13(1):95–99 (2007). doi:10.1038/nm1467.

    PubMed  CAS  Google Scholar 

  14. N. Nishiyama, and K. Kataoka. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112(3):630–648 (2006). doi:10.1016/j.pharmthera.2006.05.006.

    PubMed  CAS  Google Scholar 

  15. C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, and P. Couvreur. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J. Contr. Rel. 93(2):151–160 (2003). doi:10.1016/j.jconrel.2003.08.005.

    CAS  Google Scholar 

  16. Y. Kato, H. Onishi, and Y. Machida. Application of chitin and chitosan derivatives in the pharmaceutical field. Curr. Pharm. Biotechnol. 4–5:303–309 (2003). doi:10.2174/1389201033489748.

    Google Scholar 

  17. I. Brigger, C. Dubernet, and P. Couvreur. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. 54(5):631–651 (2002). doi:10.1016/S0169-409X(02)00044-3.

    CAS  Google Scholar 

  18. P. S. Kumar, T. R. Saini, D. Chandrasekar, V. K. Yellepeddi, S. Ramakrishna, and P. V. Diwan. Novel approach for delivery of insulin loaded poly(lactide-co-glycolide) nanoparticles using a combination of stabilizers. Drug Delivery. 14(8):517–523 (2007). doi:10.1080/10717540701606467.

    PubMed  CAS  Google Scholar 

  19. A. Basarkar, D. Devineni, R. Palaniappan, and J. Singh. Preparation, characterization, cytotoxicity and transfection efficiency of poly(dl-lactide-co-glycolide) and poly(dl-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA. Int. J. Pharmaceut. 343(1–2):247–254 (2007). doi:10.1016/j.ijpharm.2007.05.023.

    CAS  Google Scholar 

  20. F. Tewes, E. Munnier, B. Antoon, L. N. Okassa, S. Cohen-Jonathan, H. Marchais, L. Douziech-Eyrolles, M. Souce, P. Dubois, and I. Chourpa. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Euro. J. Pharm. Biopharm. 66(3):488–492 (2007). doi:10.1016/j.ejpb.2007.02.016.

    CAS  Google Scholar 

  21. P. Kallinteri, S. Higgins, G. A. Hutcheon, C. B. St Pourcain, and M. C. Garnett. Novel functionalized biodegradable polymers for nanoparticle drug delivery systems. Biomacromolecules. 6(4):1885–1894 (2005). doi:10.1021/bm049200j.

    PubMed  CAS  Google Scholar 

  22. E. Leo, B. Brina, F. Forni, and M. A. Vandelli. In vitro evaluation of PLA nanoparticles containing a lipophilic rug in water-soluble or insoluble form. Int. J. Pharmaceut. 278(1):133–141 (2004). doi:10.1016/j.ijpharm.2004.03.002.

    CAS  Google Scholar 

  23. H. J. Jeon, J. I. Jeong, M. K. Jang, Y. H. Park, and J. W. Nah. Effect of solvent on the preparation of surfactant-free poly(dl-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int. J. Pharmaceut. 207(1–2):99–108 (2000). doi:10.1016/S0378-5173(00)00537-8.

    CAS  Google Scholar 

  24. E. Jabbari, A. Florschutz, L. Petersen, N. Liu, L. Lu, B. Currier, and M. Yaszemski. Release characteristics of recombinant human bone morphogenic protein-2 from PLGA microspheres embedded in a poly(propylene fumarate) porous scaffold. Trans. Soc. Biomaterials 512 (2004).

  25. A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schafer, H. Takeuchi, C. M. Lehr, P. Maincent, and Y. Kawashima. Design of rolipram-loaded nanoparticles: comparison of two preparation methods. J. Contr. Rel. 71(3):297–306 (2001). doi:10.1016/S0168-3659(01)00230-9.

    CAS  Google Scholar 

  26. S. K. Sahoo, J. Panyam, S. Prabha, and V. Labhasetwar. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Contr. Rel. 82(1):105–114 (2002). doi:10.1016/S0168-3659(02)00127-X.

    CAS  Google Scholar 

  27. S. Sant, M. Thommes, and P. Hildgen. Microporous structure and drug release kinetics of polymeric nanoparticles. Langmuir. 24(1):280–287 (2008). doi:10.1021/la702244w.

    PubMed  CAS  Google Scholar 

  28. Q. Liu, C. Cai, and C. Dong. Poly(l-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior. J. Biomed. Mater. Res. A 2008, in press.

  29. J. Lee, E. Cho, and K. Cho. Incorporation and release behavior of hydrophobic drug in functionalized poly(d,l-lactide)-block-poly(ethylene oxide) micelles. J. Contr. Rel. 94(2–3):323–335 (2004). doi:10.1016/j.jconrel.2003.10.012.

    CAS  Google Scholar 

  30. G. Katsikogianni, and K. Avgoustakis. Poly(lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanoparticles: drug loading and release properties. J. Nanosci. Nanotech. 6(9–10):3080–3086 (2006). doi:10.1166/jnn.2006.404.

    CAS  Google Scholar 

  31. K. Avgoustakis. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Del. 1(1):321–333 (2004). doi:10.2174/1567201043334605.

    CAS  Google Scholar 

  32. J. A. Thomas. Locking self-assembly: strategies and outcomes. Chem. Soc. Rev. 36(6):856–868 (2007). doi:10.1039/b415246h.

    PubMed  CAS  Google Scholar 

  33. G. Colombo, P. Soto, and E. Gazit. Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends Biotechnol. 25(5):211–218 (2007). doi:10.1016/j.tibtech.2007.03.004.

    PubMed  CAS  Google Scholar 

  34. Y. S. Hong, R. L. Legge, S. Zhang, and P. Chen. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules. 4(5):1433–1442 (2003). doi:10.1021/bm0341374.

    PubMed  CAS  Google Scholar 

  35. J. A. Patch, and A. E. Barron. Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr. Opin. Chem. Biol. 6(6):872–877 (2002). doi:10.1016/S1367-5931(02)00385-X.

    PubMed  CAS  Google Scholar 

  36. J. A. R. Worrall, M. Górna, X. Y. Pei, D. R. Spring, R. L. Nicholson, and B. F. Luisi. Design and chance in the self-assembly of macromolecules. Biochem. Soc. Trans. 35:502–507 (2007). doi:10.1042/BST0350502.

    PubMed  CAS  Google Scholar 

  37. P. W. Latham. Therapeutic peptides revisited. Nat. Biotechnol. 17(8):755–757 (1999). doi:10.1038/11686.

    PubMed  CAS  Google Scholar 

  38. E. A. Rossi, R. M. Sharkey, W. McBride, H. Karacay, L. Zeng, H. J. Hansen, D. M. Goldenberg, and C. H. Chang. Development of new multivalent-bispecific agents for pretargeting tumor localization and therapy. Clin. Cancer Res. 9(10):3886S–3896S (2003).

    PubMed  CAS  Google Scholar 

  39. S. Bacsi, R. Geoffrey, G. Visentin, R. De Palma, R. Aster, and J. Gorski. Identification of T cells responding to a self-protein modified by an external agent. Hum. Immunol. 62(2):113–124 (2001). doi:10.1016/S0198-8859(00)00242-1.

    PubMed  CAS  Google Scholar 

  40. T. A. Elbayoumi, S. Pabba, A. Roby, and V. P. Torchilin. Antinucleosome antibody-modified liposomes and lipid-core micelles for tumor-targeted delivery of therapeutic and diagnostic agents. J. Liposome Res. 17(1):1–14 (2007). doi:10.1080/08982100601186474.

    PubMed  CAS  Google Scholar 

  41. Y. Gupta, A. Jain, P. Jain, and S. K. Jain. Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J. Drug Target. 15(3):231–240 (2007). doi:10.1080/10611860701289719.

    PubMed  CAS  Google Scholar 

  42. S. D. Li, and L. Huang. Surface-modified LPD nanoparticles for tumor targeting. Oligonucl. Therapeutics. 1082:1–8 (2006).

    CAS  Google Scholar 

  43. K. J. Harrington, M. Mubashar, and A. M. Peters. Polyethylene glycol in the design of tumor-targetting radiolabelled macromolecules—lessons from liposomes and monoclonal antibodies. Quart. J. Nucl. Med. 46(3):171–180 (2002).

    CAS  Google Scholar 

  44. J. M. Harris, and R. B. Chess. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2(3):214–221 (2003). doi:10.1038/nrd1033.

    PubMed  CAS  Google Scholar 

  45. G. Y. Lee, K. Park, J. H. Nam, S. Y. Kim, and Y. Byun. Anti-tumor and anti-metastatic effects of gelatin-doxorubicin and PEGylated gelatin-doxorubicin nanoparticles in SCC7 bearing mice. J. Drug Target. 14(10):707–716 (2006). doi:10.1080/10611860600935701.

    PubMed  CAS  Google Scholar 

  46. Y. W. Cho, S. A. Park, T. H. Han, D. H. Son, J. S. Park, S. J. Oh, D. H. Moon, K. J. Cho, C. H. Ahn, Y. Byun, I. S. Kim, I. C. Kwon, and S. Y. Kim. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications. Biomaterials. 28(6):1236–1247 (2007). doi:10.1016/j.biomaterials.2006.10.002.

    PubMed  CAS  Google Scholar 

  47. J. H. Park, S. Kwon, M. Lee, H. Chung, J. H. Kim, Y. S. Kim, R. W. Park, I. S. Kim, S. B. Seo, I. C. Kwon, and S. Y. Jeong. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials. 27(1):119–126 (2006). doi:10.1016/j.biomaterials.2005.05.028.

    PubMed  CAS  Google Scholar 

  48. L. H. Reddy, R. K. Sharma, K. Chuttani, A. K. Mishra, and R. S. R. Murthy. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J. Contr. Rel. 105(3):185–198 (2005). doi:10.1016/j.jconrel.2005.02.028.

    CAS  Google Scholar 

  49. C. M. Solbrig, J. K. Saucier-Sawyer, V. Cody, W. M. Saltzman, and D. J. Hanlon. Polymer nanoparticles for immunotherapy from encapsulated tumor-associated antigens and whole tumor cells. Mol. Pharm. 4(1):47–57 (2007). doi:10.1021/mp060107e.

    PubMed  CAS  Google Scholar 

  50. A. S. Yang, L. Yang, W. Liu, Z. Y. Li, H. B. Xu, and X. L. Yang. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Int. J. Pharmaceut. 331(1):123–132 (2007). doi:10.1016/j.ijpharm.2006.09.015.

    CAS  Google Scholar 

  51. L. Nobs, F. Buchegger, R. Gurny, and E. Allemann. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconj. Chem. 17(1):139–145 (2006). doi:10.1021/bc050137k.

    CAS  Google Scholar 

  52. A. Cirstoiu-Hapca, L. Bossy-Nobs, F. Buchegger, R. Gurny, and F. Delie. Differential tumor cell targeting of anti-HER2 (Herceptin (R)) and anti-CD20 (Mabthera (R)) coupled nanoparticles. Int. J. Pharmaceut. 331(2):190–196 (2007). doi:10.1016/j.ijpharm.2006.12.002.

    CAS  Google Scholar 

  53. J. S. Chawla, and M. M. Amiji. Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharmaceut. 249(1–2):127–138 (2002). doi:10.1016/S0378-5173(02)00483-0.

    CAS  Google Scholar 

  54. M. Y. Simeonova, and M. N. Antcheva. Effect of farmorubicin both free and associated with poly(butylcyanoacrylate) nanoparticles on phagocytic and NK activity of peritoneal exudate cells from tumor-bearing mice. J. Drug Target. 15(4):302–310 (2007). doi:10.1080/10611860701349844.

    PubMed  CAS  Google Scholar 

  55. H. Devalapally, D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother. Pharmacol. 59(4):477–484 (2007). doi:10.1007/s00280-006-0287-5.

    PubMed  CAS  Google Scholar 

  56. U. Westedt, M. Kalinowski, M. Wittmar, T. Merdan, F. Unger, J. Fuchs, S. Schaller, U. Bakowsky, and T. Kissel. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J. Contr. Rel. 119(1):41–51 (2007). doi:10.1016/j.jconrel.2007.01.009.

    CAS  Google Scholar 

  57. H. Gao, Y. N. Wang, Y. G. Fan, and J. B. Ma. Conjugates of poly(dl-lactide-co-glycolide) on amino cyclodextrins and their nanoparticles as protein delivery system. J. Biomed. Mater. Res. A. 80A(1):111–122 (2007). doi:10.1002/jbm.a.30861.

    CAS  Google Scholar 

  58. E. Fernandez-Megia, R. Novoa-Carballal, E. Quinoa, and R. Riguera. Conjugation of bioactive ligands to PEG-grafted chitosan at the distal end of PEG. Biomacromolecules. 8(3):833–842 (2007). doi:10.1021/bm060889x.

    PubMed  CAS  Google Scholar 

  59. A. E. Mercado, X. He, W. Xu, and E. Jabbari. Release characteristics of a model protein from self-assembled succinimide-terminated poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Nanotechnology 2008, in press.

  60. F. Esmaeili, M. H. Ghahremani, B. Esmaeili, M. R. Khoshayand, F. Atyabi, and R. Dinarvand. PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int. J. Pharmaceut. 349(1–2):249–255 (2008). doi:10.1016/j.ijpharm.2007.07.038.

    CAS  Google Scholar 

  61. X. He, J. Ma, A. E. Mercado, W. Xu, and E. Jabbari. Cytotoxicity of paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Pharm. Res. 25:1552–1562 (2008). doi:10.1007/s11095-007-9513-z.

    PubMed  CAS  Google Scholar 

  62. H. T. Deng. Nitrite-assisted peptide iodination and conjugation. J. Pept. Sci. 13(2):107–112 (2007). doi:10.1002/psc.806.

    PubMed  CAS  Google Scholar 

  63. M. E. Gindy, S. Ji, T. R. Hoye, A. Z. Panagiotopoulos, and R. K. Prud’homme. Preparation of poly(ethylene glycol) protected nanoparticles with variable bioconjugate ligand density. Biomacromolecules. 9:2705–2711 (2008).

    PubMed  CAS  Google Scholar 

  64. K. Ananda, P. Nacharaju, P. K. Smith, S. A. Acharya, and B. N. Manjula. Analysis of functionalization of methoxy-PEG as maleimide-PEG. Anal. Biochem. 374(2):231–242 (2008). doi:10.1016/j.ab.2007.11.034.

    PubMed  CAS  Google Scholar 

  65. D. A. Ossipov, and J. Hilborn. Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules. 39(5):1709–1718 (2006). doi:10.1021/ma052545p.

    CAS  Google Scholar 

  66. Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, and M. G. Finn. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125(11):3192–3193 (2003). doi:10.1021/ja021381e.

    PubMed  CAS  Google Scholar 

  67. D. Boturyn, J. L. Coll, E. Garanger, M. C. Favrot, and P. Dumy. Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J. Am. Chem. Soc. 126(18):5730–5739 (2004). doi:10.1021/ja049926n.

    PubMed  CAS  Google Scholar 

  68. O. Renaudet, L. BenMohamed, G. Dasgupta, I. Bettahi, and P. Dumy. Towards a self-adjuvanting multivalent B and T cell epitope containing synthetic glycolipopeptide cancer vaccine. ChemMedChem. 3(5):737–741 (2008). doi:10.1002/cmdc.200700315.

    PubMed  CAS  Google Scholar 

  69. X. He, and E. Jabbari. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules. 8(3):780–792 (2007). doi:10.1021/bm060671a.

    PubMed  CAS  Google Scholar 

  70. Y. Wang, C. Y. Ke, C. W. Beh, S. Q. Liu, S. H. Goh, and Y. Y. Yang. The self-assembly of biodegradable cationic polymer micelles as vectors for gene transfection. Biomaterials. 28(35):5358–5368 (2007). doi:10.1016/j.biomaterials.2007.08.013.

    PubMed  CAS  Google Scholar 

  71. K. Stuhler, and H. E. Meyer. MALDI: more than peptide mass fingerprints. Curr. Opin. Mol. Ther. 6(3):239–248 (2004).

    PubMed  Google Scholar 

  72. L. J. Li, R. W. Garden, and J. V. Sweedler. Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol. 18(4):151–160 (2000). doi:10.1016/S0167-7799(00)01427-X.

    PubMed  CAS  Google Scholar 

  73. H. Sato, N. Ichieda, H. Tao, and H. Ohtani. Data processing method for the determination of accurate molecular weight distribution of polymers by SEC/MALDI-MS. Anal. Sci. 20(9):1289–1294 (2004). doi:10.2116/analsci.20.1289.

    PubMed  CAS  Google Scholar 

  74. M. Mazarin, S. Viel, B. Allard-Breton, A. Thevand, and L. Charles. Use of pulsed gradient spin-echo NMR as a tool in MALDI method development for polymer molecular weight determination. Anal. Chem. 78(8):2758–2764 (2006). doi:10.1021/ac0522207.

    PubMed  CAS  Google Scholar 

  75. H. Dong, S. E. Paramonov, L. Aulisa, E. L. Bakota, and J. D. Hartgerink. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. J. Am. Chem. Soc. 129(41):12468–12472 (2007). doi:10.1021/ja072536r.

    PubMed  CAS  Google Scholar 

  76. K. Baginska, J. Makowska, W. Wiczk, F. Kasprzykowski, and L. Chmurzynski. Conformational studies of alanine-rich peptide using CD and FTIR spectroscopy. J. Pept. Sci. 14(3):283–289 (2008). doi:10.1002/psc.923.

    PubMed  CAS  Google Scholar 

  77. A. Kusel, Z. Khattari, P. E. Schneggenburger, A. Banerjee, T. Salditt, and U. Diederichsen. Conformation and interaction of a d,l-alternating peptide with a bilayer membrane: X-ray reflectivity, CD, and FTIR spectroscopy. ChemPhysChem. 8(16):2336–2343 (2007). doi:10.1002/cphc.200700477.

    PubMed  Google Scholar 

  78. D. Krikorian, A. Stavrakoudis, N. Biris, C. Sakarellos, D. Andreu, E. de Oliveira, G. Mezo, Z. Majer, F. Hudecz, S. Welling-Wester, M. T. Cung, and V. Tsikaris. Influence of sequential oligopeptide carriers on the bioactive structure of conjugated epitopes: comparative study of the conformation of a Herpes simplex virus glycoprotein gD-1 epitope in the free and conjugated form, and protein “built-in” crystal structure. Biopolymers. 84(4):383–399 (2006). doi:10.1002/bip.20486.

    PubMed  CAS  Google Scholar 

  79. K. B. Joshi, and S. Verma. Sequence shuffle controls morphological consequences in a self-assembling tetrapeptide. J. Pept. Sci. 14(2):118–126 (2008). doi:10.1002/psc.955.

    PubMed  CAS  Google Scholar 

  80. B. B. Hole, J. A. Schwarz, J. L. Gilbert, and B. L. Atkinson. A study of biologically active peptide sequences (P-15) on the surface of an ABM scaffold (PepGen P-15 (TM)) using AFM and FTIR. J. Biomed. Mater. Res. A. 74A(4):712–721 (2005). doi:10.1002/jbm.a.30331.

    CAS  Google Scholar 

  81. J. L. Swift, M. C. Burger, D. Massotte, T. E. S. Dahms, and D. T. Cramb. Two-photon excitation fluorescence cross-correlation assay for ligand–receptor binding: cell membrane nanopatches containing the human mu-opioid receptor. Anal. Chem. 79(17):6783–6791 (2007). doi:10.1021/ac0709495.

    PubMed  CAS  Google Scholar 

  82. B. Li, J. X. Chen, and J. H. C. Wang. RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J. Biomed. Mater. Res. A. 79A(4):989–998 (2006). doi:10.1002/jbm.a.30847.

    CAS  Google Scholar 

  83. Y. Ito, M. Kajihara, and Y. Imanishi. Materials for enhancing cell-adhesion by immobilization of cell-adhesive peptide. J. Biomed. Mater. Res. A. 25(11):1325–1337 (1991). doi:10.1002/jbm.820251102.

    CAS  Google Scholar 

  84. M. J. Clift, B. Rothen-Rutishauser, D. M. Brown, R. Duffin, K. Donaldson, L. Proudfoot, K. Guy, and V. Stone. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 232:418–427 (2008).

    PubMed  CAS  Google Scholar 

  85. W. Xiao, N. Yao, L. Peng, R. H. Liu, and K. S. Lam. Near-infrared optical imaging in glioblastoma xenograft with ligand-targeting alpha3 integrin. Eur. J. Nucl. Med. Mol. Imag., 2008, in press.

  86. D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm. Res. 22(12):2107–2114 (2005). doi:10.1007/s11095-005-8343-0.

    PubMed  CAS  Google Scholar 

  87. E. Jabbari, and X. He. Synthesis and characterization of bioresorbable in situ crosslinkable ultra low molecular weight poly(lactide) macromer. J. Mater. Sci.—Mater. Med. 19(1):311–318 (2008). doi:10.1007/s10856-006-0020-2.

    PubMed  CAS  Google Scholar 

  88. E. Jabbari. Self-assembly and nanoparticle formation of a novel bioresorbable and crosslinkable terpolymer. Proceed. AIChE Ann. Meeting, 2006: 324f.

  89. E. Jabbari, W. Xu, and X. He, Degradation characteristics of novel in-situ crosslinkable poly(lactide-co-glycolide-ethylene oxide-fumarate) copolymer networks. Trans. Soc. Biomater. 353 (2007).

  90. S. Kim, and Y. H. Bae. Long-term insulinotropic activity of glucagon-like peptide-1/polymer conjugate on islet microcapsules. Tissue Eng. A. 10(11–12):1607–1616 (2004). doi:10.1089/ten.2004.10.1607.

    CAS  Google Scholar 

  91. R. Tugyi, G. Mezo, S. Gitta, E. Fellinger, D. Andreu, and F. Hudecz. Effect of conjugation with polypeptide carrier on the enzymatic degradation of Herpes simplex virus glycoprotein D derived epitope peptide. Bioconj. Chem. 19(8):1652–1659 (2008). doi:10.1021/bc700469r.

    CAS  Google Scholar 

  92. M. Orzaez, L. Mondragon, I. Marzo, G. Sanclimens, A. Messeguer, E. Perez-Paya, and M. J. Vicent. Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters: effective methods to improve inhibition of mitochondria-mediated apoptosis. Peptides. 28(5):958–968 (2007). doi:10.1016/j.peptides.2007.02.014.

    PubMed  CAS  Google Scholar 

  93. B. Bechinger. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156(3):197–211 (1997). doi:10.1007/s002329900201.

    PubMed  CAS  Google Scholar 

  94. G. Fear, S. Komarnytsky, and I. Raskin. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol. Ther. 113(2):354–368 (2007). doi:10.1016/j.pharmthera.2006.09.001.

    PubMed  CAS  Google Scholar 

  95. L. O. Sillerud, and R. S. Larson. Design and structure of peptide and peptidomimetic antagonists of protein–protein interaction. Curr. Protein Peptide Sci. 6(2):151–169 (2005). doi:10.2174/1389203053545462.

    CAS  Google Scholar 

  96. S. D. Allen, S. V. Rawale, C. C. Whitacre, and P. T. P. Kaumaya. Therapeutic peptidomimetic strategies for autoimmune diseases: costimulation blockade. J. Pept. Res. 65(6):591–604 (2005). doi:10.1111/j.1399-3011.2005.00256.x.

    PubMed  CAS  Google Scholar 

  97. D. A. Groneberg, A. Fischer, K. F. Chung, and H. Daniel. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Am. J. Respir. Cell Mol. Biol. 30(3):251–260 (2004). doi:10.1165/rcmb.2003-0315TR.

    PubMed  CAS  Google Scholar 

  98. J. T. Randolph, and D. A. DeGoey. Peptidomimetic inhibitors of HIV protease. Curr. Top. Med. Chem. 4(10):1079–1095 (2004). doi:10.2174/1568026043388330.

    PubMed  CAS  Google Scholar 

  99. Z. Athanassiou, K. Patora, R. L. A. Dias, K. Moehle, J. A. Robinson, and G. Varani. Structure-guided peptidomimetic design leads to nanomolar beta-hairpin inhibitors of the Tat-TAR interaction of bovine immunodeficiency virus. Biochemistry. 46(3):741–751 (2007). doi:10.1021/bi0619371.

    PubMed  CAS  Google Scholar 

  100. D. E. Owens, and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharmaceut. 307(1):93–102 (2006). doi:10.1016/j.ijpharm.2005.10.010.

    CAS  Google Scholar 

  101. R. FernandezUrrusuno, E. Fattal, J. M. Rodrigues, J. Feger, P. Bedossa, and P. Couvreur. Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. J. Biomed. Mater. Res. A. 31(3):401–408 (1996). doi:10.1002/(SICI)1097-4636(199607)31:3<401::AID-JBM15>3.0.CO;2-L.

    CAS  Google Scholar 

  102. F. L. Ahsan, I. P. Rivas, M. A. Khan, and A. I. T. Suarez. Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J. Contr. Rel. 79(1–3):29–40 (2002). doi:10.1016/S0168-3659(01)00549-1.

    CAS  Google Scholar 

  103. V. Schafer, H. V. Briesen, H. Rubsamen-Waigmann, A. M. Steffan, C. Royer, and J. Kreuter. Phagocytosis and degradation of human serum albumin microspheres and nanoparticles in human macrophages. J. Microencaps. 11:261–269 (1994). doi:10.3109/02652049409040455.

    CAS  Google Scholar 

  104. Y. Tabata, and Y. Ikada. Effect of surface wettability of microspheres on phagocytosis. J. Colloid Interface Sci. 127(1):132–140 (1989). doi:10.1016/0021-9797(89)90013-1.

    Google Scholar 

  105. D. J. Burgess, and S. S. Davis. Potential use of albumin microspheres as a drug delivery system: II. In vivo deposition and release of steroids. Int. J. Pharmaceut. 46(1–2):69–76 (1988). doi:10.1016/0378-5173(88)90011-7.

    CAS  Google Scholar 

  106. Y. Ikada, and Y. Tabata. Phagocytosis of bioactive microspheres. J. Bioact. Compat. Polym. 1:32–46 (1986). doi:10.1177/088391158600100104.

    CAS  Google Scholar 

  107. V. Schafer, H. Vonbriesen, R. Andreesen, A. M. Steffan, C. Royer, S. Troster, J. Kreuter, and H. Rubsamenwaigmann. Phagocytosis of nanoparticles by human-immunodeficiency-virus (HIV)-infected macrophages—a possibility for antiviral drug targeting. Pharm. Res. 9(4):541–546 (1992). doi:10.1023/A:1015852732512.

    PubMed  CAS  Google Scholar 

  108. A. Rolland, G. Merdrignac, J. Gouranton, D. Bourel, R. Leverge, and B. Genetet. Flow cytometric quantitative-evaluation of phagocytosis by human mononuclear and polymorphonuclear cells using fluorescent nanoparticles. J. Immunol. Methods. 96(2):185–193 (1987). doi:10.1016/0022-1759(87)90313-9.

    PubMed  CAS  Google Scholar 

  109. R. A. Bejjani, D. BenEzra, J. L. L. Bourges, S. Gautier, M. Halhal, D. Chauvaud, R. Gurny, and F. F. Behar-Cohen. Phagocytosis of polylactides (PLA) nanoparticles by bovine and human RPE cells in vitro. Invest. Ophthalmol. Vis. Sci. 43:U518–U518 (2002).

    Google Scholar 

  110. K. D. Newman, P. Elamanchili, G. S. Kwon, and J. Samuel. Uptake of poly(d,l-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J. Biomed. Mater. Res. A. 60(3):480–486 (2002). doi:10.1002/jbm.10019.

    CAS  Google Scholar 

  111. A. Raz, C. Bucana, W. E. Fogler, G. Poste, and I. J. Fidler. Biochemical, morphological, and ultrastructural studies on the uptake of liposomes by murine macrophages. Cancer Res. 41(2):487–494 (1981).

    PubMed  CAS  Google Scholar 

  112. W. Yan and L. Huang. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int. J. Pharmaceut. 2008, in press.

  113. M. Cegnar, J. Kristl, and J. Kos. Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours. Expert Opin. Biol. Ther. 5(12):1557–1569 (2005). doi:10.1517/14712598.5.12.1557.

    PubMed  CAS  Google Scholar 

  114. S. Kommareddy, S. B. Tiwari, and M. M. Amiji. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol. Cancer Res. Treat. 4(6):615–625 (2005).

    PubMed  CAS  Google Scholar 

  115. G. Kaul, and M. Amiji. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J. Drug Target. 12(9–10):585–591 (2004). doi:10.1080/10611860400013451.

    PubMed  CAS  Google Scholar 

  116. T. Ameller, W. Marsaud, P. Legrand, R. Gref, and J. M. Renoir. In vitro and in vivo biologic evaluation of long-circulating biodegradable drug carriers loaded with the pure antiestrogen RU 58668. Int. J. Cancer. 106(3):446–454 (2003). doi:10.1002/ijc.11248.

    PubMed  CAS  Google Scholar 

  117. N. Benkirane, G. Guichard, J. P. Briand, and S. Muller. Exploration of requirements for peptidomimetic immune recognition—antigenic and immunogenic properties of reduced peptide bond pseudopeptide analogues of a histone hexapeptide. J. Biol. Chem. 271(52):33218–33224 (1996). doi:10.1074/jbc.271.52.33218.

    PubMed  CAS  Google Scholar 

  118. M. A. Babizhayev, Y. A. Semiletov, Y. A. Lul’kin, N. L. Sakina, E. L. Savel’yeva, L. M. Alimbarova, and I. P. Barinskii. 3D molecular modeling, free radical modulating and immune cells signaling activities of the novel peptidomimetic l-glutamyl-histamine: possible immunostimulating role. Peptides. 26(4):551–563 (2005). doi:10.1016/j.peptides.2004.11.012.

    PubMed  CAS  Google Scholar 

  119. J. A. Swanson, and A. D. Hoppe. The coordination of signaling during Fc receptor-mediated phagocytosis. J. Leukocyte Biol. 76(6):1093–1103 (2004). doi:10.1189/jlb.0804439.

    PubMed  CAS  Google Scholar 

  120. J. K. Czop. Phagocytosis of particulate activators of the alternative complement pathway: effects of fibronectin. Adv. Immunol. 38:361–398 (1986). doi:10.1016/S0065-2776(08)60011-5.

    PubMed  CAS  Google Scholar 

  121. D. Boyle, L. F. Tien, N. G. F. Cooper, V. Shepherd, and B. J. Mclaughlin. A mannose receptor is involved in retinal phagocytosis. Invest. Ophthalmol. Vis. Sci. 32(5):1464–1470 (1991).

    PubMed  CAS  Google Scholar 

  122. N. Murahashi, A. Sasaki, K. Higashi, A. Morikawa, and H. Yamada. Relationship between the anchor structure of the galactosyl ligand for liposome modification and accumulation in the liver. Biol. Pharm. Bull. 18(1):82–88 (1995).

    PubMed  CAS  Google Scholar 

  123. S. Espuelas, P. Haller, F. Schuber, and B. Frisch. Synthesis of an amphiphilic tetraantennary mannosyl conjugate and incorporation into liposome carriers. Bioorg. Med. Chem. Lett. 13(15):2557–2560 (2003). doi:10.1016/S0960-894X(03)00472-4.

    PubMed  CAS  Google Scholar 

  124. C. D. Muller, and F. Schuber. Neo-mannosylated liposomes—synthesis and interaction with mouse Kupffer cells and resident peritoneal-macrophages. Biochim. Biophys. Acta. 986(1):97–105 (1989). doi:10.1016/0005-2736(89)90277-0.

    PubMed  CAS  Google Scholar 

  125. C. J. Cui, V. C. Stevens, and S. P. Schwendeman. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine. Vaccine. 25(3):500–509 (2007). doi:10.1016/j.vaccine.2006.07.055.

    PubMed  CAS  Google Scholar 

  126. A. Z. Wang, V. Bagalkot, C. C. Vasilliou, F. Gu, F. Alexis, L. Zhang, M. Shaikh, K. Yuet, C. M. J. R. Langer, P. W. Kantoff, N. H. Bander, S. Jon, and O. C. Farokhzad. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem. 3(9):1311–1315 (2008). doi:10.1002/cmdc.200800091.

    PubMed  CAS  Google Scholar 

  127. D. A. Mankoff, J. M. Link, H. M. Linden, L. Sundararajan, and K. A. Krohn. Tumor receptor imaging. J. Nucl. Med. 49:149s–163s (2008). doi:10.2967/jnumed.107.045963.

    PubMed  CAS  Google Scholar 

  128. S. Sofou, and G. Sgouros. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv. 5(2):189–204 (2008). doi:10.1517/17425247.5.2.189.

    PubMed  CAS  Google Scholar 

  129. T. Kubota, S. Ikeda, and A. Okamoto. Intracellular mRNA imaging with a hybridization sensitive fluorescent nucleotide. Nucleic Acids Symp. Ser. 52:355–356 (2008). doi:10.1093/nass/nrn179.

    CAS  Google Scholar 

  130. J. H. Kang, and J. K. Chung. Molecular-genetic imaging based on reporter gene expression. J. Nucl. Med. 49:164s–179s (2008). doi:10.2967/jnumed.107.045955.

    PubMed  CAS  Google Scholar 

  131. C. Rome, F. Couillaud, and C. T. W. Moonen. Gene expression and gene therapy imaging. Eur. Radiol. 17(2):305–319 (2007). doi:10.1007/s00330-006-0378-z.

    PubMed  Google Scholar 

  132. Y. W. Jun, J. H. Lee, and J. Cheon. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47(28):5122–5135 (2008). doi:10.1002/anie.200701674.

    CAS  Google Scholar 

  133. T. R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Finones, and S. Jin. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials. 28(16):2572–2581 (2007). doi:10.1016/j.biomaterials.2007.01.043.

    PubMed  CAS  Google Scholar 

  134. E. Chang, N. Thekkek, W. W. Yu, V. L. Colvin, and R. Drezek. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small. 2(12):1412–1417 (2006). doi:10.1002/smll.200600218.

    PubMed  CAS  Google Scholar 

  135. B. S. Kim, J. M. Qiu, J. P. Wang, and T. A. Taton. Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett. 5(10):1987–1991 (2005). doi:10.1021/nl0513939.

    PubMed  CAS  Google Scholar 

  136. N. Nasongkla, E. Bey, J. M. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F. Chin, A. D. Sherry, D. A. Boothman, and J. M. Gao. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6(11):2427–2430 (2006). doi:10.1021/nl061412u.

    PubMed  CAS  Google Scholar 

  137. A. L. Z. Lee, Y. Wang, W. H. Ye, H. S. Yoon, S. Y. Chan, and Y. Y. Yang. Efficient intracellular delivery of functional proteins using cationic polymer core/shell nanoparticles. Biomaterials. 29(9):1224–1232 (2008). doi:10.1016/j.biomaterials.2007.11.021.

    PubMed  CAS  Google Scholar 

  138. H. Toyama, K. Hatano, H. Suzuki, M. Ichise, S. Momosaki, G. Kudo, F. Ito, T. Kato, H. Yamaguchi, K. Katada, M. Sawada, and K. Ito. In vivo imaging of microglial activation using a peripheral benzodiazepine receptor ligand: [C-11]PK-11195 and animal PET following ethanol injury in rat striatum. Ann. Nucl. Med. 22(5):417–424 (2008). doi:10.1007/s12149-008-0136-1.

    PubMed  Google Scholar 

  139. M. P. Kung, C. Hou, B. P. Lieberman, S. Oya, D. E. Ponde, E. Blankemeyer, D. Skovronsky, M. R. Kilbourn, and H. F. Kung. In vivo imaging of beta-cell mass in rats using F-18-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J. Nucl. Med. 49(7):1171–1176 (2008). doi:10.2967/jnumed.108.051680.

    PubMed  CAS  Google Scholar 

  140. M. F. Bai, M. Sexton, N. Stella, and D. J. Bornhop. MBC94, a conjugable ligand for cannabinoid CB2 receptor imaging. Bioconj. Chem. 19(5):988–992 (2008). doi:10.1021/bc700419e.

    CAS  Google Scholar 

  141. A. Biserni, F. Giannessi, A. F. Sciarroni, F. M. Milazzo, A. Maggi, and P. Ciana. In vivo imaging reveals selective peroxisome proliferator activated receptor modulator activity of the synthetic ligand 3-(1-(4-chlorobenzyl)-3-t-butylthio-5-isopropylindol-2-yl)-2,2-dimethylpropanoic acid (MK-886). Mol. Pharmacol. 73(5):1434–1443 (2008). doi:10.1124/mol.107.042689.

    PubMed  CAS  Google Scholar 

  142. N. Akhter, K. Shiba, K. Ogawa, S. Tsuji, S. Kinuya, K. Nakajima, and H. Mori. A change of in vivo characteristics depending on specific activity of radioiodinated (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-pIV] as a ligand for sigma receptor imaging. Nucl. Med. Biol. 35(1):29–34 (2008). doi:10.1016/j.nucmedbio.2007.09.005.

    PubMed  CAS  Google Scholar 

  143. M. Bai, M. B. Rone, V. Papadopoulos, and D. J. Bornhop. A novel functional translocator protein ligand for cancer imaging. Bioconj. Chem. 18(6):2018–2023 (2007). doi:10.1021/bc700251e.

    CAS  Google Scholar 

  144. N. Herold, K. Uebelhack, L. Franke, H. Amthauer, L. Luedemann, H. Bruhn, R. Felix, R. Uebelhack, and M. Plotkin. Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [I-123-ADAM. J. Neural Transm. 113(5):659–670 (2006). doi:10.1007/s00702-005-0429-7.

    PubMed  CAS  Google Scholar 

  145. Y. W. Jun, J. T. Jang, and J. Cheon. Magnetic nanoparticle assisted molecular MR imaging. Bio-Appl. Nanoparticle. 620:85–106 (2007).

    Google Scholar 

  146. B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D’Angelo, L. Cattel, and P. Couvreur. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89(11):1452–1464 (2000). doi:10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P.

    PubMed  CAS  Google Scholar 

  147. B. Stella, V. Marsaud, S. Arpicco, G. Geraud, L. Cattel, P. Couvreur, and J. M. Renoir. Biological characterization of folic acid-conjugated poly(H(2)NPEGCA-co-HDCA) nanoparticles in cellular models. J. Drug Target. 15(2):146–153 (2007). doi:10.1080/10611860600935826.

    PubMed  CAS  Google Scholar 

  148. M. Candelaria, L. Taja-Chayeb, C. Arce-Salinas, S. Vidal-Millan, A. Serrano-Olvera, and A. Duenas-Gonzalez. Genetic determinants of cancer drug efficacy and toxicity: practical considerations and perspectives. Anti-Cancer Drugs. 16(9):923–933 (2005). doi:10.1097/01.cad.0000180120.39278.c9.

    PubMed  CAS  Google Scholar 

  149. Y. Chao, C. P. Li, T. Y. Chao, W. C. Su, R. K. Hsieh, M. F. Wu, K. H. Yeh, W. Y. Kao, L. T. Chen, and A. L. Cheng. An open, multi-centre, phase II clinical trial to evaluate the efficacy and safety of paclitaxel, UFT, and leucovorin in patients with advanced gastric cancer. Br. J. Cancer. 95(2):159–163 (2006). doi:10.1038/sj.bjc.6603225.

    PubMed  CAS  Google Scholar 

  150. Q. H. Zhao, B. S. Han, Z. H. Wang, C. Y. Gao, C. H. Peng, and J. C. Shen. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: doxorubicin loading and in vitro and in vivo studies. Nanomed. Nanotechnol. Biol. Med. 3(1):63–74 (2007). doi:10.1016/j.nano.2006.11.007.

    CAS  Google Scholar 

  151. O. Gallego, and V. Puntes. What can nanotechnology do to fight cancer? Clin. Transl. Oncol. 8:788–795 (2006). doi:10.1007/s12094-006-0133-6.

    PubMed  CAS  Google Scholar 

  152. S. Modi, J. P. Jain, A. J. Domb, and N. Kumar. Exploiting EPR in polymer drug conjugate delivery for tumor targeting. Current Pharmaceutical Design. 12(36):4785–4796 (2006). doi:10.2174/138161206779026272.

    PubMed  CAS  Google Scholar 

  153. A. K. Iyer, G. Khaled, J. Fang, and H. Maeda. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today. 11(17–18):812–818 (2006). doi:10.1016/j.drudis.2006.07.005.

    PubMed  CAS  Google Scholar 

  154. L. H. Reddy. Drug delivery to tumours: recent strategies. J. Pharm. Pharmacol. 57(10):1231–1242 (2005). doi:10.1211/jpp.57.10.0001.

    PubMed  CAS  Google Scholar 

  155. C. H. Heldin, K. Rubin, K. Pietras, and A. Ostman. High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer. 4(10):806–813 (2004). doi:10.1038/nrc1456.

    PubMed  CAS  Google Scholar 

  156. H. Maeda, J. Fang, T. Inutsuka, and Y. Kitamoto. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3(3):319–328 (2003). doi:10.1016/S1567-5769(02)00271-0.

    PubMed  CAS  Google Scholar 

  157. S. N. Ettinger, C. C. Poellmann, N. A. Wisniewski, A. A. Gaskin, J. S. Shoemaker, J. M. Poulson, M. W. Dewhirst, and B. KLitzman. Urea as a recovery marker for quantitative assessment of tumor interstitial solutes with microdialysis. Cancer Res. 61(21):7964–7970 (2001).

    PubMed  CAS  Google Scholar 

  158. T. D. Harris, S. Kalogeropoulos, T. Nguyen, S. Liu, J. Bartis, C. Ellars, S. Edwards, D. Onthank, P. Silva, P. Yalamanchili, S. Robinson, J. Lazewatsky, J. Barrett, and J. Bozarth. Design, synthesis, and evaluation of radiolabeled integrin alpha(v)beta(3) receptor antagonists for tumor imaging and radiotherapy. Cancer Biother. Radiopharm. 18(4):627–641 (2003). doi:10.1089/108497803322287727.

    PubMed  CAS  Google Scholar 

  159. C.-Y. Ke, C. Mathias, and M. Green. The folate receptor as a molecular model for tumor-selective radionuclide delivery. Nuclear Med. Biol. 30:811–817 (2003). doi:10.1016/S0969-8051(03)00117-3.

    CAS  Google Scholar 

  160. L. Brannon-Peppas, and J. O. Blanchette. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56(11):1649–1659 (2004). doi:10.1016/j.addr.2004.02.014.

    PubMed  CAS  Google Scholar 

  161. X. B. B. Zhao, and R. J. Lee. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv. Drug Deliv. Rev. 56(8):1193–1204 (2004). doi:10.1016/j.addr.2004.01.005.

    PubMed  CAS  Google Scholar 

  162. L. J. Yang, J. Li, W. Zhou, X. Yuan, and S. Li. Targeted delivery of antisense oligodeoxynucleotides to folate receptor-overexpressing tumor cells. J. Contr. Rel. 95(2):321–331 (2004).

    CAS  Google Scholar 

  163. Y. Y. Jiang, C. Liu, M. H. Hong, S. J. Zhu, and Y. Y. Pei. Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system: design, synthesis, and biological evaluation. Bioconj. Chem. 18(1):41–49 (2007). doi:10.1021/bc060135f.

    Google Scholar 

  164. D. Bar, R. N. Apte, E. Voronov, C. A. Dinarello, and S. Cohen. A continuous delivery system of IL-1 receptor antagonist reduces angiogenesis and inhibits tumor development. FASEB J. 18(1):161–163 (2003).

    PubMed  Google Scholar 

  165. C. Mamot, D. C. Drummond, U. Greiser, K. Hong, D. B. Kirpotin, J. D. Marks, and J. W. Park. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res. 63(12):3154–3161 (2003).

    PubMed  CAS  Google Scholar 

  166. C. M. Huang, Y. T. Wu, and S. T. Chen. Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem. Biol. 7(7):453–461 (2000). doi:10.1016/S1074-5521(00)00131-9.

    PubMed  CAS  Google Scholar 

  167. G. Mariani, P. A. Erba, and A. Signore. Receptor-mediated tumor targeting with radiolabeled peptides: there is more to it than somatostatin analogs. J. Nucl. Med. 47(12):1904–1907 (2006).

    PubMed  CAS  Google Scholar 

  168. S. R. Li, E. Koller, P. Valent, D. Gludovacz, Q. Yang, P. Patri, P. Angelberger, R. Dudczak, and I. Virgolini. Effects of vasoactive intestinal peptide (VIP) and somatostatin (SST) on lipoprotein receptor expression by A431 tumor cells. Life Sci. 68(11):1243–1257 (2001). doi:10.1016/S0024-3205(00)01023-7.

    PubMed  CAS  Google Scholar 

  169. B. A. Nock, T. Maina, M. Behe, A. Nikolopoulou, M. Gotthardt, J. S. Schmitt, T. M. Behr, and H. R. Macke. CCK-2/gastrin receptor-targeted tumor imaging with Tc-99m-labeled minigastrin analogs. J. Nucl. Med. 46(10):1727–1736 (2005).

    PubMed  CAS  Google Scholar 

  170. M. de Visser, W. M. van Weerden, C. M. A. de Ridder, S. Reneman, M. Melis, E. P. Krenning, and M. de Jong. Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J. Nucl. Med. 48(1):88–93 (2007).

    PubMed  Google Scholar 

  171. C. Haase, R. Bergmann, J. Oswald, D. Zips, and J. Pietzsch. Neurotensin receptors in adeno- and squamous cell carcinoma. Anticancer Res. 26(5A):3527–3533 (2006).

    PubMed  CAS  Google Scholar 

  172. K. Podar, G. Tonon, M. Sattler, Y. T. Tai, S. LeGouill, H. Yasui, K. Ishitsuka, R. Kumar, L. N. Pandite, T. Hideshima, D. Chauhan, and K. C. Anderson. The small-molecule VEGF-receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Blood. 108(11):339B–339B (2006).

    Google Scholar 

  173. T. S. Udayakumar, E. L. Bair, R. B. Nagle, and G. T. Bowden. Pharmacological inhibition of FGF receptor signaling inhibits LNCaP prostate tumor growth, promatrilysin, and PSA expression. Mol. Carcinog. 38(2):70–77 (2003). doi:10.1002/mc.10146.

    PubMed  CAS  Google Scholar 

  174. R. M. Owen, C. B. Carlson, J. W. Xu, P. Mowery, E. Fasella, and L. L. Kiessling. Bifunctional ligands that target cells displaying the alpha(v)beta(3) integrin. ChemBioChem. 8(1):68–82 (2007). doi:10.1002/cbic.200600339.

    PubMed  CAS  Google Scholar 

  175. C. B. Carlson, P. Mowery, R. M. Owen, E. C. Dykhuizen, and L. L. Kiessling. Selective tumor cell targeting using low-affinity, multivalent interactions. ACS Chem. Biol. 2(2):119–127 (2007). doi:10.1021/cb6003788.

    PubMed  CAS  Google Scholar 

  176. A. M. Lillo, C. Z. Sun, C. S. Gao, H. Ditzel, J. Parrish, C. M. Gauss, J. Moss, B. Felding-Habermann, P. Wirsching, D. L. Boger, and K. D. Janda. A human single-chain antibody specific for integrin alpha(3)beta(1) capable of cell internalization and delivery of antitumor agents. Chem. Biol. 11(7):897–906 (2004). doi:10.1016/j.chembiol.2004.04.018.

    PubMed  CAS  Google Scholar 

  177. B. Felding-Habermann. Integrin adhesion receptors in tumor metastasis. Clin. Exp. Metastasis. 20(3):203–213 (2003). doi:10.1023/A:1022983000355.

    PubMed  CAS  Google Scholar 

  178. P. Lanza, B. FeldingHabermann, Z. M. Ruggeri, M. Zanetti, and R. Billetta. Selective interaction of a conformationally-constrained Arg-Gly-Asp (RGD) motif with the integrin receptor alpha nu beta 3 expressed on human tumor cells. Blood Cells Mol. Dis. 23(12):230–241 (1997). doi:10.1006/bcmd.1997.0140.

    PubMed  CAS  Google Scholar 

  179. X. He, and E. Jabbari. Solid-phase synthesis of reactive peptide crosslinker by selective deprotection. Protein Pept. Lett. 13(7):715–718 (2006). doi:10.2174/092986606777790610.

    PubMed  CAS  Google Scholar 

  180. S. Moore. Facilitating oral chemotherapy treatment and compliance through patient/family-focused education. Cancer Nursing. 30(2):112–122 (2007). doi:10.1097/01.NCC.0000265009.33053.2d.

    PubMed  Google Scholar 

  181. M. K. Danks, K. J. Yoon, R. A. Bush, J. S. Remack, M. Wierdl, L. Tsurkan, S. U. Kim, E. Garcia, M. Z. Metz, J. Najbauer, P. M. Potter, and K. S. Aboody. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res. 67(1):22–25 (2007). doi:10.1158/0008-5472.CAN-06-3607.

    PubMed  CAS  Google Scholar 

  182. D. Ravel, V. Dubois, J. Quinonero, F. Meyer-Losic, J. P. Delord, P. Rochaix, C. Nicolazzi, F. Ribes, C. Mazerolles, E. Assouly, K. Vialatte, I. Hor, J. Kearsey, and A. Trouet. Preclinical toxicity, toxicokinetics, and antitumoral efficacy studies of DTS-201, a tumor-selective peptidic prodrug of doxorubicin. Clin. Cancer Res. 14(4):1258–1265 (2008). doi:10.1158/1078-0432.CCR-07-1165.

    PubMed  CAS  Google Scholar 

  183. Y. Yoneda, S. Steiniger, K. Capková, J. M. Mee, Y. Liu, G. F. Kaufmann, and K. D. Janda. A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorg. Med. Chem. Lett. 18(5):1632–1636 (2008). doi:10.1016/j.bmcl.2008.01.060.

    PubMed  CAS  Google Scholar 

  184. S. Zalipsky, M. Saad, R. Kiwan, E. Ber, N. Yu, and T. Minko. Antitumor activity of new liposomal prodrug of mitomycin C in multidrug resistant solid tumor: insights of the mechanism of action. J. Drug Target. 15(7–8):518–530 (2007). doi:10.1080/10611860701499946.

    PubMed  CAS  Google Scholar 

  185. A. S. Lalani, S. E. Alters, A. Wong, M. R. Albertella, J. L. Cleland, and W. D. Henner. Selective tumor targeting by the hypoxia-activated prodrug AQ4N blocks tumor growth and metastasis in preclinical models of pancreatic cancer. Clin. Cancer Res. 13(7):2216–2225 (2007). doi:10.1158/1078-0432.CCR-06-2427.

    PubMed  CAS  Google Scholar 

  186. W. Wu, Y. Luo, C. Sun, Y. Liu, P. Kuo, J. Varga, R. Xiang, R. Reisfeld, K. D. Janda, T. S. Edgington, and C. Liu. Targeting cell-impermeable prodrug activation to tumor microenvironment eradicates multiple drug-resistant neoplasms. Cancer Res. 66(2):970–980 (2006). doi:10.1158/0008-5472.CAN-05-2591.

    PubMed  CAS  Google Scholar 

  187. G. Schwarz, J. Brandenburg, M. Reich, T. Burster, C. Driessen, and H. Kalbacher. Characterization of legumain. Biol. Chem. 383(11):1813–1816 (2002). doi:10.1515/BC.2002.203.

    PubMed  CAS  Google Scholar 

  188. C. Liu, C. Z. Sun, H. N. Huang, K. Janda, and T. Edgington. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res. 63(11):2957–2964 (2003).

    PubMed  CAS  Google Scholar 

  189. J. Gawenda, F. Traub, H. J. Luck, H. Kreipe, and R. von Wasielewski. Legumain expression as a prognostic factor in breast cancer patients. Breast Cancer Res Treat. 102(1):1–6 (2007). doi:10.1007/s10549-006-9311-z.

    PubMed  CAS  Google Scholar 

  190. S. Lewen, H. Zhou, H. D. Hu, T. M. Cheng, D. Markowitz, R. A. Reisfeld, R. Xiang, and Y. P. Luo. A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis. Cancer Immunol. Immunother. 57(4):507–515 (2008). doi:10.1007/s00262-007-0389-x.

    PubMed  CAS  Google Scholar 

  191. C. M. Berger, K. L. Knutson, L. G. Salazar, S. K., and M. L. Disis. Peptide-based vaccines. 2002. http://depts.washington.edu/tumorvac/MultiMedia/Publications/PeptideBasedVaccines-2002.pdf.

  192. L. Florea, B. Hallorsson, O. Kohlbacher, R. Schwartz, S. Hoffman, and S. Istrail. Epitope prediction algorithms for peptide-based vaccine design. Proceedings of the IEEE Computer Society Bioinformatics Conference 2003.

  193. A. Pashov, B. Monzavi-Karbassi, G. Raghava, and T. Kieber-Emmons. Peptide mimotopes as prototypic templates of broad-spectrum surrogates of carbohydrate antigens for cancer vaccination. Crit. Rev. Immunol. 27(3):247–270 (2007).

    PubMed  CAS  Google Scholar 

  194. A. B. Nesburn, X. Zhang, A. Issagholian, X. Zhu, and L. BenMohamed. Induction of CD8 T-cell-specific immunity against ocular herpes simplex virus with a Th-CTL fusion synthetic lipopeptide: the lipid moiety units influence priming for protective CD8+ cytotoxic T lymphocytes. Invest. Ophthalmol. Vis. Sci. 46:15289–15301 (2005).

    Google Scholar 

  195. C. Mesa, and L. E. Fernandez. Challenges facing adjuvants for cancer immunotherapy. Immunol. Cell Biol. 82(6):644–650 (2004). doi:10.1111/j.0818-9641.2004.01279.x.

    PubMed  CAS  Google Scholar 

  196. M. A. Sommerfelt, and B. Sorensen. Prospects for HIV-1 therapeutic immunisation and vaccination: the potential contribution of peptide immunogens. Expert Opin. Biol. Ther. 8(6):745–757 (2008). doi:10.1517/14712598.8.6.745.

    PubMed  CAS  Google Scholar 

  197. C. S. Klade, H. Wedemeyer, T. Berg, H. Hinrichsen, G. Cholewinska, S. Zeuzem, H. Blum, M. Buschle, S. Jelovcan, V. Buerger, E. Tauber, J. Frisch, and M. P. Manns. Therapeutic vaccination of chronic hepatitis c nonresponder patients with the peptide vaccine IC41. Gastroenterology. 134(5):1385–1395 (2008). doi:10.1053/j.gastro.2008.02.058.

    PubMed  CAS  Google Scholar 

  198. H. Takahashi, H. Ishizaki, H. Tahara, Y. Tamaki, and Y. Yanagi. Suppression of choroidal neovascularization by vaccination with epitope peptide derived from human VEGF receptor 2 in an animal model. Invest. Ophthalmol. Vis. Sci. 49(5):2143–2147 (2008). doi:10.1167/iovs.07-0523.

    PubMed  Google Scholar 

  199. E. G. Marazuela, N. Prado, E. Morow, H. Fernandez-Garcia, M. Villalba, R. Rodriguez, and E. Batanero. Intranasal vaccination with poly(lactide-co-glycolide) microparticles containing a peptide T of Ole e 1 prevents mice against sensitization. Clin. Exp. Allergy. 38(3):520–528 (2008). doi:10.1111/j.1365-2222.2007.02922.x.

    PubMed  CAS  Google Scholar 

  200. R. Glück, K. G. Burri, and I. Metcalfe. Adjuvant and antigen delivery properties of virosomes. Curr. Drug Del. 2(4):395–400 (2005). doi:10.2174/156720105774370302.

    Google Scholar 

  201. H. J. Peng, L. C. Tsai, S. N. Su, Z. N. Chang, H. D. Shen, P. L. Chao, S. W. Kuo, I. Y. Tsao, and M. W. Hung. Comparison of different adjuvants of protein and DNA vaccination for the prophylaxis of IgE antibody formation. Vaccine. 22(5–6):755–761 (2004). doi:10.1016/j.vaccine.2003.08.030.

    PubMed  CAS  Google Scholar 

  202. S. K. Kim, G. Ragupathi, C. Musselli, S. J. Choi, Y. S. Park, and P. O. Livingston. Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines. Vaccine. 18(7–8):597–603 (1999). doi:10.1016/S0264-410X(99)00316-3.

    PubMed  CAS  Google Scholar 

  203. S. Hoshi, A. Uchino, N. Saito, K. I. Kusanagi, T. Ihara, and S. Ueda. Comparison of adjuvants with respect to serum IgG antibody response in orally immunized chickens. Comp. Immunol. Microbiol. Infect. Dis. 22(1):63–69 (1999). doi:10.1016/S0147-9571(98)00017-4.

    PubMed  CAS  Google Scholar 

  204. H. Tamber, P. Johansen, H. P. Merkle, and B. Gander. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv. Drug Del. Rev. 57(3):357–376 (2005). doi:10.1016/j.addr.2004.09.002.

    CAS  Google Scholar 

  205. Y. Waeckerle-Men, and M. Groettrup. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv. Drug Del. Rev. 57(3):475–482 (2005). doi:10.1016/j.addr.2004.09.007.

    CAS  Google Scholar 

  206. A. Luzardo-Alvarez, N. Blarer, K. Peter, J. F. Romero, C. Reymond, G. Corradin, and B. Gander. Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. J. Contr. Rel. 109(1–3):62–76 (2005). doi:10.1016/j.jconrel.2005.09.015.

    CAS  Google Scholar 

  207. Y. Waeckerle-Men, E. Scandella, E. U. Allmen, B. Ludewig, S. Gillessen, H. P. Merkle, B. Gander, and M. Groettrup. Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly(lactide-co-glycolide) microspheres for immunotherapy. J. Immunol. Methods. 287(1–2):109–124 (2004). doi:10.1016/j.jim.2004.01.010.

    PubMed  CAS  Google Scholar 

  208. M. Amidi, S. G. Romeijn, J. C. Verhoef, H. E. Junginger, L. Bungener, A. Huckriede, D. J. A. Crommelin, and W. Jiskoot. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine. 25(1):144–153 (2007). doi:10.1016/j.vaccine.2006.06.086.

    PubMed  CAS  Google Scholar 

  209. T. Yoshikawa, N. Okada, A. Oda, K. Matsuo, K. Matsuo, H. Kayamuro, Y. Ishii, T. Yoshinaga, T. Akagi, M. Akashi, and S. Nakagawa. Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells. Vaccine. 26(10):1303–1313 (2008). doi:10.1016/j.vaccine.2007.12.037.

    PubMed  CAS  Google Scholar 

  210. S. Hamdy, P. Elamanchili, A. Alshamsan, O. Molavi, T. Satou, and J. Samuel. Enhanced antigen-specific primary CD4(+) and CD8(+) responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(d,l-lactic-co-glycolic acid) nanoparticles. J. Biomed. Mater. Res. A. 81A(3):652–662 (2007). doi:10.1002/jbm.a.31019.

    CAS  Google Scholar 

  211. S. Lisi, R. Peterkova, M. Peterka, J. L. Vonesch, J. V. Ruch, and H. Lesot. Tooth morphogenesis and pattern of odontoblast differentiation. Connect. Tissue Res. 44:167–170 (2003). doi:10.1080/713713612.

    PubMed  Google Scholar 

  212. U. Ripamonti, and A. H. Reddi. Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit. Rev. Oral Biol. Med. 8(2):154–163 (1997).

    Article  PubMed  CAS  Google Scholar 

  213. Y. Robinson, C. E. Heyde, S. K. Tschoke, M. A. Mont, T. M. Seyler, and S. D. Ulrich. Evidence supporting the use of bone morphogenetic proteins for spinal fusion surgery. Exp. Rev. Med. Dev. 5(1):75–84 (2008). doi:10.1586/17434440.5.1.75.

    CAS  Google Scholar 

  214. J. M. Wozney. Overview of bone morphogenetic proteins. Spine. 27(16 Suppl 1):S2–S8 (2002). doi:10.1097/00007632-200208151-00002.

    PubMed  Google Scholar 

  215. B. McKay, and H. S. Sandhu. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine. 27(16 Suppl 1):S66–S85 (2002). doi:10.1097/00007632-200208151-00014.

    PubMed  Google Scholar 

  216. R. A. Meyer Jr., M. H. Meyer, M. Tenholder, S. Wondracek, R. Wasserman, and P. Garges. Gene expression in older rats with delayed union of femoral fractures. J. Bone Jt. Surg. (Am.). 85-A(7):1243–1254 (2003).

    Google Scholar 

  217. K. Behnam, M. L. Phillips, J. D. Silva, E. J. Brochmann, M. E. Duarte, and S. S. Murray. BMP binding peptide: a BMP-2 enhancing factor deduced from the sequence of native bovine bone morphogenetic protein/non-collagenous protein. J. Orthop. Res. 23(1):175–180 (2005). doi:10.1016/j.orthres.2004.05.001.

    PubMed  CAS  Google Scholar 

  218. F. Hillger, G. Herr, R. Rudolph, and E. Schwarz. Biophysical comparison of BMP-2, ProBMP-2, and the free pro-peptide reveals stabilization of the pro-peptide by the mature growth factor. J. Biol. Chem. 280(15):14974–14980 (2005). doi:10.1074/jbc.M414413200.

    PubMed  CAS  Google Scholar 

  219. X. Lin, P. O. Zamora, S. Albright, J. D. Glass, and L. A. Pena. Multidomain synthetic peptide B2A2 synergistically enhances BMP-2 in vitro. J. Bone Miner. Res. 20(4):693–703 (2005). doi:10.1359/JBMR.041104.

    PubMed  CAS  Google Scholar 

  220. L. B. E. Shields, G. H. Raque, S. D. Glassman, M. Campbell, T. Vitaz, J. Harpring, and C. B. Shields. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine. 31(5):542–547(2006). doi:10.1097/01.brs.0000201424.27509.72.

    PubMed  Google Scholar 

  221. J. B. Oldham, L. Lu, X. Zhu, B. D. Porter, T. E. Hefferan, D. R. Larson, B. L. Currier, A. G. Mikos, and M. J. Yaszemski. Biological activity of rhBMP-2 released from PLGA microspheres. J. Biomech. Eng. Trans. ASME. 122(3):289–292 (2000). doi:10.1115/1.429662.

    CAS  Google Scholar 

  222. M. C. Meikle. On the transplantation, regeneration and induction of bone: the path to bone morphogenetic proteins and other skeletal growth factors. Surg.: J. R. Coll. Surg. Edinb. Ir. 5(4):232–243 (2007).

    CAS  Google Scholar 

  223. K. C. Klein, J. C. Reed, and J. R. Lingappa. Intracellular destinies: degradation, targeting, assembly, and endocytosis of HIV Gag. AIDS Rev. 9(3):150–610 (2007).

    PubMed  Google Scholar 

  224. M. Amyere, M. Mettlen, P. Van der Smissen, A. Platek, B. Payrastre, A. Veithen, and P. J. Courtoy. Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int. J. Med. Microbiol. 291(6–7):487–494 (2002). doi:10.1078/1438-4221-00157.

    PubMed  CAS  Google Scholar 

  225. J. Z. Rappoport. Focusing on clathrin-mediated endocytosis. Biochem. J. 412:415–423 (2008). doi:10.1042/BJ20080474.

    PubMed  CAS  Google Scholar 

  226. L. Pelkmans. Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim. Biophys. Acta Mol. Cell Res. 1746(3):295–304 (2005). doi:10.1016/j.bbamcr.2005.06.009.

    CAS  Google Scholar 

  227. D. Holler, and I. Dikic. Receptor endocytosis via ubiquitin-dependent and -independent pathways. Biochem. Pharmacol. 67(6):1013–1017 (2004). doi:10.1016/j.bcp.2004.01.003.

    PubMed  CAS  Google Scholar 

  228. M. A. McNiven. Big gulps: specialized membrane domains for rapid receptor-mediated endocytosis. Trends Cell Biol. 16(10):487–492 (2006). doi:10.1016/j.tcb.2006.08.007.

    PubMed  CAS  Google Scholar 

  229. S. H. Kim, J. H. Jeong, K. W. Chun, and T. G. Park. Target-specific cellular uptake of PLGA nanoparticles coated with poly(l-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir. 21(19):8852–8857 (2005). doi:10.1021/la0502084.

    PubMed  CAS  Google Scholar 

  230. J. P. Luzio, B. A. Rous, N. A. Bright, P. R. Pryor, B. M. Mullock, and R. C. Piper. Lysosome–endosome fusion and lysosome biogenesis. J. Cell Sci. 113(9):1515–1524 (2000).

    PubMed  CAS  Google Scholar 

  231. K. Sasaki, K. Kogure, S. Chaki, Y. Nakamura, R. Moriguchi, H. Hamada, R. Danev, K. Nagayama, S. Futaki, and H. Harashima. An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Anal. Bioanal. Chem. 391(8):2717–2727 (2008). doi:10.1007/s00216-008-2012-1.

    PubMed  CAS  Google Scholar 

  232. K. M. Stewart, K. L. Horton, and S. O. Kelley. Cell-penetrating peptides as delivery vehicles for biology and medicine. Org. Biomol. Chem. 6(13):2242–2255 (2008). doi:10.1039/b719950c.

    PubMed  CAS  Google Scholar 

  233. M. E. Herbig, K. M. Welter, and H. A. Merkle. Reviewing biophysical and cell biological methodologies in cell-penetrating peptide (CPP) research. Crit. Rev. Ther. Drug Carr. Sys. 24(3):203–255 (2007).

    CAS  Google Scholar 

  234. M. C. Morris, S. Deshayes, F. Heitz, and G. Divita. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol. Cell. 100(4):201–217 (2008). doi:10.1042/BC20070116.

    PubMed  CAS  Google Scholar 

  235. C. Foerg, and H. P. Merkle. On the biomedical promise of cell penetrating peptides: limits versus prospects. J. Pharm. Sci. 97(1):144–162 (2008). doi:10.1002/jps.21117.

    PubMed  CAS  Google Scholar 

  236. P. Jarvert, K. Langel, S. El-Andaloussi, and U. Langel. Applications of cell-penetrating peptides in regulation of gene expression. Biochem. Soc. Trans. 35:770–774 (2007). doi:10.1042/BST0350770.

    Google Scholar 

  237. J. S. Suk, J. Suh, K. Choy, S. K. Lai, J. Fu, and J. Hanes. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials. 27(29):5143–5150 (2006). doi:10.1016/j.biomaterials.2006.05.013.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This publication was made possible in part by NIH Grant No. P20 RR-016461 from the National Center for Research Resources and by National Science Foundation/EPSCoR under Grant No. 2001 RII-EPS-0132573. This work was also supported by a grant to E. Jabbari from National Science Foundation under Grant No. CBET-0756394. The author thanks Dr. Xuezhong He and Angel E. Mercado for the assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaiel Jabbari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbari, E. Targeted Delivery with Peptidomimetic Conjugated Self-Assembled Nanoparticles. Pharm Res 26, 612–630 (2009). https://doi.org/10.1007/s11095-008-9802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9802-1

KEY WORDS

Navigation