Skip to main content
Log in

Pharmacogenomics Approach Reveals MRP1 (ABCC1)-Mediated Resistance to Geldanamycins

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Geldanamycin and its analogues belong to a new class of anticancer agents that inhibit the molecular chaperone heat shock protein 90. We hypothesized that membrane transporters expressed on tumor cells may contribute at least in part to cellular sensitivity to these agents. The purpose of this study is to identify novel transporters as determinant for sensitivity and resistance to geldanamycins.

Methods

To facilitate a systematic study of chemosensitivity across multiple geldanamycin analogues, we correlated mRNA expression profiles of majority of transporters with anticancer drug activities in 60 human tumor cell lines (NCI-60). We subsequently validated the gene–drug correlations using cytotoxicity and transport assays.

Results

The GA analogues displayed negative correlations with mRNA expression levels of the multidrug resistance protein 1 (MRP1, ABCC1). Suppressing MRP1 efflux using the inhibitor MK-571 and small interfering RNA in cell lines with intrinsic and acquired MRP1 overexpression (A549 and HL-60/ADR) and in cell lines stably transduced with MRP1 (MCF7/MRP1) increased intracellular drug accumulation and increased tumor cell sensitivity to geldanamycin analogues.

Conclusions

These results suggest that elevated expression of MRP1, like the alternative efflux transporter MDR1 (ABCB1, P-glycoprotein), can significantly influence tumor cell sensitivity to geldanamycins as a potential chemoresistance factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

DTP:

Developmental Therapeutics Program

GA:

geldanamycin

Hsp90:

heat shock protein 90

Hsp90:

heat shock protein 90

MOAs:

mechanism of action

MTS:

(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)2Htetrazolium, inner salt)

NCI:

the National Cancer Institute

SRB:

sulforhodamine B

3-([3-(2-[7-chloro-2-quinolinyl]ethenyl)phenyl-(3-dimethylamino-3-oxopropyl)-thio-methyl]thio)propanoic acid:

MK-571

Reference

  1. L. Whitesell, E. G. Mimnaugh, B. De Costa, C. E. Myers, and L. M. Neckers. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. U. S. A. 91:8324–8328 (1994) doi:10.1073/pnas.91.18.8324.

    Article  PubMed  CAS  Google Scholar 

  2. V. Smith, E. A. Sausville, R. F. Camalier, H. H. Fiebig, and A. M. Burger. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother. Pharmacol. 56:126–137 (2005) doi:10.1007/s00280-004-0947-2.

    Article  PubMed  CAS  Google Scholar 

  3. P. Workman. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol. Med. 10:47–51 (2004) doi:10.1016/j.molmed.2003.12.005.

    Article  PubMed  CAS  Google Scholar 

  4. L. Neckers. Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr. Med. Chem. 10:733–739 (2003) doi:10.2174/0929867033457818.

    Article  PubMed  CAS  Google Scholar 

  5. R. K. Ramanathan, D. L. Trump, J. L. Eiseman, C. P. Belani, S. S. Agarwala, E. G. Zuhowski, J. Lan, D. M. Potter, S. P. Ivy, S. Ramalingam, A. M. Brufsky, M. K. Wong, S. Tutchko, and M. J. Egorin. Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin. Cancer. Res. 11:3385–3391 (2005) doi:10.1158/1078-0432.CCR-04-2322.

    Article  PubMed  CAS  Google Scholar 

  6. A. Maloney, P. A. Clarke, and P. Workman. Genes and proteins governing the cellular sensitivity to HSP90 inhibitors: a mechanistic perspective. Curr. Cancer Drug. Targets. 3:331–341 (2003) doi:10.2174/1568009033481822.

    Article  PubMed  CAS  Google Scholar 

  7. Y. Huang, S. Penchala, A. N. Pham, and J. Wang. Genetic variations and gene expression of transporters in drug disposition and response. Expert. Opin. Drug. Metab. Toxicol. 4:237–254 (2008) doi:10.1517/17425255.4.3.237.

    Article  PubMed  CAS  Google Scholar 

  8. Y. Huang, P. Anderle, K. J. Bussey, C. Barbacioru, U. Shankavaram, Z. Dai, W. C. Reinhold, A. Papp, J. N. Weinstein, and W. Sadee. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res. 64:4294–4301 (2004) doi:10.1158/0008-5472.CAN-03-3884.

    Article  PubMed  CAS  Google Scholar 

  9. Y. Huang, and W. Sadee. Membrane transporters and channels in chemoresistance and sensitivity of tumor cells. Cancer Lett. 239:168–182 (2006) doi:10.1016/j.canlet.2005.07.032.

    Article  PubMed  CAS  Google Scholar 

  10. Y. Huang, P. E. Blower, R. Liu, Z. Dai, A. N. Pham, H. Moon, J. Fang, and W. Sadee. Chemogenomic analysis identifies geldanamycins as substrates and inhibitors of ABCB1. Pharm. Res. (2007). 24:1702–1712 (2007).

    Article  CAS  Google Scholar 

  11. M. M. Gottesman, T. Fojo, and S. E. Bates. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer. 2:48–58 (2002) doi:10.1038/nrc706.

    Article  PubMed  CAS  Google Scholar 

  12. G. D. Kruh, and M. G. Belinsky. The MRP family of drug efflux pumps. Oncogene. 22:7537–7552 (2003) Medline doi:10.1038/sj.onc.1206953.

    Article  PubMed  CAS  Google Scholar 

  13. Z. S. Chen, T. Furukawa, T. Sumizawa, K. Ono, K. Ueda, K. Seto, and S. I. Akiyama. ATP-dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Mol. Pharmacol. 55:921–928 (1999).

    PubMed  CAS  Google Scholar 

  14. E. M. Leslie, R. G. Deeley, and S. P. Cole. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol. 204:216–237 (2005) Medline doi:10.1016/j.taap.2004.10.012.

    Article  PubMed  CAS  Google Scholar 

  15. A. Monks, D. A. Scudiero, G. S. Johnson, K. D. Paull, and E. A. Sausville. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer. Drug Des. 12:533–541 (1997).

    PubMed  CAS  Google Scholar 

  16. J. N. Weinstein, T. G. Myers, P. M. O’Connor, S. H. Friend, A. J. Fornace Jr., K. W. Kohn, T. Fojo, S. E. Bates, L. V. Rubinstein, N. L. Anderson, J. K. Buolamwini, W. W. van Osdol, A. P. Monks, D. A. Scudiero, E. A. Sausville, D. W. Zaharevitz, B. Bunow, V. N. Viswanadhan, G. S. Johnson, R. E. Wittes, and K. D. Paull. An information-intensive approach to the molecular pharmacology of cancer. Science. 275:343–349 (1997) doi:10.1126/science.275.5298.343.

    Article  PubMed  CAS  Google Scholar 

  17. Y. Huang, P. E. Blower, C. Yang, C. Barbacioru, Z. Dai, Y. Zhang, J. J. Xiao, K. K. Chan, and W. Sadee. Correlating gene expression with chemical scaffolds of cytotoxic agents: ellipticines as substrates and inhibitors of MDR1. Pharmacogenomics J. 5:112–125 (2005) doi:10.1038/sj.tpj.6500297.

    Article  PubMed  CAS  Google Scholar 

  18. B. Efron, and R. Tibshirani. An introduction to the bootstrap. Chapman Hall, New York, 1993.

    Google Scholar 

  19. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107–1112 (1990) doi:10.1093/jnci/82.13.1107.

    Article  PubMed  CAS  Google Scholar 

  20. S. P. Cole, G. Bhardwaj, J. H. Gerlach, J. E. Mackie, C. E. Grant, K. C. Almquist, A. J. Stewart, E. U. Kurz, A. M. Duncan, and R. G. Deeley. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 258:1650–1654 (1992) doi:10.1126/science.1360704.

    Article  PubMed  CAS  Google Scholar 

  21. C. F. Manohar, J. A. Bray, H. R. Salwen, J. Madafiglio, A. Cheng, C. Flemming, G. M. Marshall, M. D. Norris, M. Haber, and S. L. Cohn. MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene. 23:753–762 (2004) doi:10.1038/sj.onc.1207151.

    Article  PubMed  CAS  Google Scholar 

  22. Y. Huang. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis. Rev. 26:183–201 (2007) doi:10.1007/s10555-007-9050-6.

    Article  PubMed  CAS  Google Scholar 

  23. S. Gollapudi, and S. Gupta. Lack of reversal of daunorubicin resistance in HL60/AR cells by cyclosporin A. Anticancer. Res. 12:2127–2132 (1992).

    PubMed  CAS  Google Scholar 

  24. K. Bhalla, A. Hindenburg, R. N. Taub, and S. Grant. Isolation and characterization of an anthracycline-resistant human leukemic cell line. Cancer Res. 45:3657–3662 (1985).

    PubMed  CAS  Google Scholar 

  25. D. Marquardt, and M. S. Center. Drug transport mechanisms in HL60 cells isolated for resistance to adriamycin: evidence for nuclear drug accumulation and redistribution in resistant cells. Cancer Res. 52:3157–3163 (1992).

    PubMed  CAS  Google Scholar 

  26. L. Llauger-Bufi, S. J. Felts, H. Huezo, N. Rosen, and G. Chiosis. Synthesis of novel fluorescent probes for the molecular chaperone Hsp90. Bioorg. Med. Chem. Lett. 13:3975–3978 (2003) doi:10.1016/j.bmcl.2003.08.065.

    Article  PubMed  CAS  Google Scholar 

  27. C. S. Morrow, C. Peklak-Scott, B. Bishwokarma, T. E. Kute, P. K. Smitherman, and A. J. Townsend. Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol. Pharmacol. 69:1499–1505 (2006) doi:10.1124/mol.105.017988.

    Article  PubMed  CAS  Google Scholar 

  28. Y. Huang, Z. Dai, C. Barbacioru, and W. Sadee. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res. 65:7446–7454 (2005) doi:10.1158/0008-5472.CAN-04-4267.

    Article  PubMed  CAS  Google Scholar 

  29. R. Liu, P. E. Blower, A. N. Pham, J. Fang, Z. Dai, C. Wise, B. Green, C. H. Teitel, B. Ning, W. Ling, B. D. Lyn-Cook, F. F. Kadlubar, W. Sadee, and Y. Huang. Cystine-glutamate transporter SLC7A11 mediates resistance to geldanamycin but not to 17-(allylamino)-17-demethoxygeldanamycin. Mol. Pharmacol. 72:1637–1646 (2007) doi:10.1124/mol.107.039644.

    Article  PubMed  CAS  Google Scholar 

  30. P. Depeille, P. Cuq, S. Mary, I. Passagne, A. Evrard, D. Cupissol, and L. Vian. Glutathione S-transferase M1 and multidrug resistance protein 1 act in synergy to protect melanoma cells from vincristine effects. Mol. Pharmacol. 65:897–905 (2004) doi:10.1124/mol.65.4.897.

    Article  PubMed  CAS  Google Scholar 

  31. P. Depeille, P. Cuq, I. Passagne, A. Evrard, and L. Vian. Combined effects of GSTP1 and MRP1 in melanoma drug resistance. Br. J. Cancer. 93:216–223 (2005) doi:10.1038/sj.bjc.6602681.

    Article  PubMed  CAS  Google Scholar 

  32. R. L. Cysyk, R. J. Parker, J. J. Barchi Jr, P. S. Steeg, N. R. Hartman, and J. M. Strong. Reaction of Geldanamycin and C17-Substituted Analogues with Glutathione: Product Identifications and Pharmacological Implications. Chem. Res. Toxicol. 19:376–381 (2006) doi:10.1021/tx050237e.

    Article  PubMed  CAS  Google Scholar 

  33. W. Lang, G. W. Caldwell, J. Li, G. C. Leo, W. J. Jones, and J. A. Masucci. Biotransformation of geldanamycin and 17-allylamino-17-demethoxygeldanamycin by human liver microsomes: reductive versus oxidative metabolism and implications. Drug Metab. Dispos. 35:21–29 (2007) doi:10.1124/dmd.106.009639.

    Article  PubMed  CAS  Google Scholar 

  34. P. Moi, K. Chan, I. Asunis, A. Cao, and Y. W. Kan. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. U. S. A. 91:9926–9930 (1994) doi:10.1073/pnas.91.21.9926.

    Article  PubMed  CAS  Google Scholar 

  35. A. Y. Shih, D. A. Johnson, G. Wong, A. D. Kraft, L. Jiang, H. Erb, J. A. Johnson, and T. H. Murphy. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J. Neurosci. 23:3394–3406 (2003) Medline.

    PubMed  CAS  Google Scholar 

  36. H. Sasaki, H. Sato, K. Kuriyama-Matsumura, K. Sato, K. Maebara, H. Wang, M. Tamba, K. Itoh, M. Yamamoto, and S. Bannai. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J. Biol. Chem. 277:44765–44771 (2002) doi:10.1074/jbc.M208704200.

    Article  PubMed  CAS  Google Scholar 

  37. L. R. Kelland, S. Y. Sharp, P. M. Rogers, T. G. Myers, and P. Workman. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl. Cancer Inst. 91:1940–1949 (1999) doi:10.1093/jnci/91.22.1940.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM61390, the Food and Drug Administration and Western University of Health Sciences. We thank the staff of NCI DTP for generation of the pharmacological database used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, AN., Wang, J., Fang, J. et al. Pharmacogenomics Approach Reveals MRP1 (ABCC1)-Mediated Resistance to Geldanamycins. Pharm Res 26, 936–945 (2009). https://doi.org/10.1007/s11095-008-9796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9796-8

KEY WORDS

Navigation