Skip to main content
Log in

Flocculated Amorphous Nanoparticles for Highly Supersaturated Solutions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To recover polymer-stabilized amorphous nanoparticles from aqueous dispersions efficiently by salt flocculation and to show that the particles redisperse and dissolve rapidly to produce highly supersaturated solutions.

Methods

Nanoparticle dispersions of itraconazole stabilized by nonionic polymers were formed by antisolvent precipitation and immediately flocculated with sodium sulfate, filtered and dried. The size after redispersion in water, crystallinity, and morphology were compared with those for particles produced by spray drying and rapid freezing.

Results

Particle drug loading increased to ∼90% after salt flocculation and removal of excess polymer with the filtrate. The formation of the flocs at constant particle volume fraction led to low fractal dimensions (open flocs), which facilitated redispersion in water to the original primary particle size of ∼300 nm. Amorphous particles, which were preserved throughout the flocculation–filtration–drying process, dissolved to supersaturation levels of up to 14 in pH 6.8 media. In contrast, both spray dried and rapidly frozen nanoparticle dispersions crystallized and did not produce submicron particle dispersions upon addition to water, nor high supersaturation values.

Conclusions

Salt flocculation produces large yields of high surface area amorphous nanoparticle powders that de-aggregate and dissolve rapidly upon redispersion in pH 6.8 media, for supersaturation levels up to 14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. A. Lipinski. Poor aqueous solubility—an industry wide problem in drug discovery Am. Pharm. Rev. 5:82–85 (2002).

    Google Scholar 

  2. S. L. Raghavan, B. Kiepfer, A. F. Davis, S. G. Kazarian, and J. Hadgraft. Membrane transport of hydrocortisone acetate from supersaturated solutions; the role of polymers. Int. J. Pharm. 221:95–105 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. U. Kumprakob, J. Kawakami, and I. Adachi. Permeation enhancement of ketoprofen using a supersaturated system with antinucleant polymers. Biol. Pharm. Bull. 28:1684–1688 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. B. C. Hancock, and M. Parks. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17:397–404 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. P. Gupta, G. Chawla, and A. K. Bansal. Physical stability and solubility advantage from amorphous celecoxib: The role of thermodynamic quantities and molecular mobility. Mol. Pharmaceutics. 1:406–413 (2004).

    Article  CAS  Google Scholar 

  6. G. S. Parks, L. J. Snyder, and F. R. Cattoir. Studies on glass. XI. Some thermodynamic relations of glassy and alpha-crystalline glucose. J. Chem. Phys. 2:595–598 (1934).

    Article  CAS  Google Scholar 

  7. M. E. Matteucci, B. K. Brettmann, T. L. Rogers, E. J. Elder, R. O. Williams III, and K. P. Johnston. Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. Mol. Pharmaceutics. 4:782–793 (2007).

    Article  CAS  Google Scholar 

  8. T. Yamada, N. Saito, T. Imai, and M. Otagiri. Effect of grinding with hydroxypropyl cellulose on the dissolution and particle size of a poorly water-soluble drug. Chem. Pharm. Bull. 47:1311–1313 (1999).

    PubMed  CAS  Google Scholar 

  9. K. Yamashita, T. Nakate, K. Okimoto, A. Ohike, Y. Tokunaga, R. Ibuki, K. Higaki, and T. Kimura. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm. 267:79–91 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. A. Hasegawa, R. Kawamura, H. Nakagawa, and I. Sugimoto. Physical properties of solid dispersions of poorly water-soluble drugs with enteric coating agents. Chem. Pharm. Bull. 33:3429–3435 (1985).

    PubMed  CAS  Google Scholar 

  11. G. Verreck, K. Six, G. Van den Mooter, L. Baert, J. Peeters, and M. E. Brewster. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion—part I. Int. J. Pharm. 251:165–174 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. K. Okimoto, M. Miyake, R. Ibuki, M. Yasumura, N. Ohnishi, and T. Nakai. Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropylmethylcellulose. Int. J. Pharm. 159:85–93 (1997).

    Article  CAS  Google Scholar 

  13. H. Suzuki, and H. Sunada. Comparison of nicotinamide, ethylurea and polyethylene glycol as carriers for nifedipine solid dispersion systems. Chem. Pharm. Bull. 45:1688–1693 (1997).

    PubMed  CAS  Google Scholar 

  14. Y. Zhu, N. Shah, H. A. W. Malick, M. H. Infeld, and J. W. McGinnity. Controlled release of a poorly water-soluble drug from hot-melt extrudates containing acyrlic polymers. Drug Dev. Ind. Pharm. 32:569–583 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. C. Aitken-Nichol, F. Zhang, and J. W. McGinnity. Hot melt extrusion of acrylic films. Pharm. Res. 13:804–808 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. G. Sertsou, J. Butler, J. Hempenstall, and T. Rades. Solvent change co-precipitation with hydroxylpropyl methylcellulose phthalate to improve dissolution characteristics of a poorly water-soluble drug. J. Pharm. Pharmacol. 54:1041–1047 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. J. Huang, R. J. Wigent, C. M. Bentzley, and J. B. Schwartz. Nifedipine solid dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blend for controlled drug delivery: Effect of drug loading on release kinetics. Int. J. Pharm. 319:44–54 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. M. E. Matteucci, M. A. Hotze, R. O. Williams III, and K. P. Johnston. Drug nanoparticles by antisolvent precipitation: Mixing energy versus surfactant stabilization. Langmuir. 22:8951–8959 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. G. Muhrer, U. Meier, F. Fusaro, S. Albano, and M. Mazzotti. Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: Generation of drug microparticles and drug-polymer solid dispersions. Int. J. Pharm. 308:69–83 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. E. M. Liversidge, G. G. Liversidge, and E. R. Cooper. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 18:113–120 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. R. H. Muller, and B. H. L. Bohm. Nanosuspensions, Colloidal Drug Carriers Expert Meeting, Berlin, 1997, pp. 149–174.

  22. C. Jacobs, O. Kayser, and R. H. Muller. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int J Pharm. 196:161–164 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. B. K. Johnson. Flash Nanoprecipitation of Organic Actives via Confined Micromixing and Block Copolymer Stabilization. Department of Chemical Engineering, Princeton, 2003.

    Google Scholar 

  24. D. Horn, and E. Luddecke. Preparation and characterization of nano-sized carotenoid hydrosols. NATO ASI Ser. 3: High Technol. 12:761–775 (1996).

    CAS  Google Scholar 

  25. T. L. Rogers, I. B. Gillespie, J. E. Hitt, K. L. Fransen, C. A. Crowl, C. J. Tucker, G. B. Kupperblatt, J. N. Becker, D. L. Wilson, C. Todd, C. F. Broomall, J. C. Evans, and E. J. Elder. Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs. Pharm. Res. 21:2048–2057 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. N. Rasenack, and B. W. Muller. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 19:1894–1900 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel. Control of thickness and orientation of solution-grown silicon nanowires. Science. 287:1471–1473 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. R. G. Larson. The Structure and Rheology of Complex Fluids. Oxford University Press, New York, 1999.

    Google Scholar 

  29. D. H. Napper. Polymeric Stabilization of Colloidal Dispersions. Academic, New York, 1983.

    Google Scholar 

  30. P. C. Heimenz, and R. Rajagopalan. Principles of Colloid and Surface Chemistry. Marcel Dekker, New York, 1997.

    Google Scholar 

  31. I. Limayem, C. Charcosset, and H. Fessi. Purification of nanoparticle suspensions by a concentration/diafiltration process. Separation and Purification Technology. 38:1–9 (2004).

    Article  CAS  Google Scholar 

  32. X. Chen, M. E. Matteucci, C. Y. Lo, R. O. Williams, III, and K. P. Johnston. Flocculation of suspensions formed by antisolvent precipitation to produce redispersible naproxen nanocrystals. Drug Dev. Ind. Pharm. (in press).

    Google Scholar 

  33. X. Chen. Nanoparticle Engineering Processes: Evaporative Precipitation into Aqueous Solution (EPAS) and Antisolvent Precipitation to Enhance the Dissolution Rates of Poorly Water Soluble Drugs. Department of Chemical Engineering. University of Texas, Austin, 2004.

    Google Scholar 

  34. V. S. Murthy, J. N. Cha, G. D. Stucky, and M. S. Wong. Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblied leading to hollow microspheres. J. Am. Chem. Soc. 126:5292–5299 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. N. Pandit, T. Trygstad, S. Croy, M. Bohorquez, and C. Koch. Effect of salts on the micellization, clouding, and solubilization behavior of pluronic F127 solutions. J. Colloid Interface Sci. 222:213–220 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. P. Pang, and P. Englezos. Phase separation of polyethylene oxide (PEO)-water solution and its relationship to the flocculating capability of the PEO. Fluid Phase Equilib. 194–197:1059–1066 (2002).

    Article  Google Scholar 

  37. P. Bahadur, P. Li, M. Almgren, and W. Brown. Effect of potassium fluoride on the micellar behavior of Pluronic F-68 in aqueous solution. Langmuir. 8:1903–1907 (1992).

    Article  CAS  Google Scholar 

  38. P. Bahadur, K. Pandya, M. Almgren, P. Li, and P. Stilbs. Effect of inorganic salts on the micellar behavior of ethylene oxide-propylene oxide block copolymer in aqueous solution. Colloid Polym. Sci. 271:657–667 (1993).

    Article  CAS  Google Scholar 

  39. P. Alexandridis, and J. F. Holzwarth. Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer). Langmuir. 13:6074–6082 (1997).

    Article  CAS  Google Scholar 

  40. D. H. Napper. Colloid and Interface Science. Academic, New York, 1977.

    Google Scholar 

  41. R. H. Pelton. Polystyrene and polystyrene-butadiene latexes stabilized by poly(N-isopropylacrylamide). J. Polym. Sci., A, Polym. Chem. 26:9–18 (1988).

    Article  CAS  Google Scholar 

  42. C.-W. Chen, D. Tano, and M. Akashi. Colloidal platinum nanoparticles stabilized by vinyl polymers with amide side chains: Dispersion stability and catalytic activity in aqueous electrolyte solutions. J. Colloid Interface Sci. 225:349–358 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. N. Nyamweya, and S. W. Hoag. Assessment of polymer-polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry. Pharm. Res. 17:625–631 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. X. M. Xu, Y. M. Song, Q. N. Ping, Y. Wang, and X. Y. Liu. Effect of ionic strength on the temperature-dependent behavior of hydroxypropyl methylcellulose solution and matrix tablet. J. Appl. Polym. Sci. 102:4066–4074 (2006).

    Article  CAS  Google Scholar 

  45. K. Six, H. Berghmans, C. Leuner, J. Cressman, K. Van Werde, J. Mullens, L. Benoist, M. Thimon, L. Meublat, G. Verreck, J. Peeters, M. E. Brewster, and G. Van den Mooter. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion, part II. Pharm. Res. 20:1047–1054 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. I. D. Robb. The Chemistry and Technology of Water Soluble Polymers. Plemun, London, 1982.

    Google Scholar 

  47. D. Eagland. Water. Plenum, New York, 1975.

    Google Scholar 

  48. D. H. Napper. Steric stabilization and the hofmeister series. J. Colloid Interface Sci. 33:384–392 (1970).

    Article  Google Scholar 

  49. D. H. Napper. Flocculation studies of sterically stabilized dispersions. J. Colloid Interface Sci. 32:106–114 (1970).

    Article  CAS  Google Scholar 

  50. M. A. Bevan, and P. J. Scales. Solvent quality dependent interactions and phase behavior of polystyrene particles with physisorbed PEO-PPO-PEO. Langmuir. 18:1474–1484 (2002).

    Article  CAS  Google Scholar 

  51. M.A. Bevan. Effect of Adsorbed Polymer on the Interparticle Potential. Department of Chemical Engineering. Carnegie Mellon University, Pittsburgh, 1999.

    Google Scholar 

  52. D. C. Prieve, and M. A. Bevan. Polymers in Particulate Systems: Properties and Applications. Marcel Dekker, New York, 2002.

    Google Scholar 

  53. M. A. Bevan, and D. C. Prieve. Forces and hydrodynamic interactions between polystyrene surfaces with adsorbed PEO-PPO-PEO. Langmuir. 16:9274–9281 (2000).

    Article  CAS  Google Scholar 

  54. D. R. Ulrich. Chemical Processing of Ceramics. Chemical & Engineering News. January 1: (1990).

  55. W. B. Russel, D. A. Saville, and W. R. Schowalter. Colloidal Dispersions. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  56. I. Gonda. Development of a systematic theory of suspension inhalation aerosols. I. A framework to study the effects of aggregation on the aerodynamic behavior of drug particles. Int. J. Pharm. 27:99–116 (1985).

    Article  CAS  Google Scholar 

  57. J. D. Engstrom, D. T. Simpson, E. S. Lai, R. O. Williams III, and K. P. Johnston. Morphology of protein particles produced by spray freezing of concentrated solutions. Eur. J. Pharm. Biopharm. 65:149–162 (2007).

    Article  PubMed  CAS  Google Scholar 

  58. Y.-F. Maa, P.-A. Nguyen, K. Sit, and C. C. Hsu. Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation. Biotechnol. Bioeng. 60:301–309 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. M. Gordon, and J. S. Taylor. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Noncrystalline copolymers. J. Appl. Chem. 2:493–500 (1952).

    Article  CAS  Google Scholar 

  60. J. Hu, K. P. Johnston, and R. O. Williams III. Stable amorphous danazol nanostructured powders with rapid dissolutions rates produced by spray freezing into liquid. Drug Dev. Ind. Pharm. 30:695–704 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from The Dow Chemical Company (Midland, MI). This material is based upon work supported in part by the STC Program of the National Science Foundation under Agreement No. CHE-9876674 and the Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith P. Johnston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matteucci, M.E., Paguio, J.C., Miller, M.A. et al. Flocculated Amorphous Nanoparticles for Highly Supersaturated Solutions. Pharm Res 25, 2477–2487 (2008). https://doi.org/10.1007/s11095-008-9659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9659-3

KEY WORDS

Navigation