Skip to main content
Log in

Rate-Limiting Steps of Oral Absorption for Poorly Water-Soluble Drugs in Dogs; Prediction from a Miniscale Dissolution Test and a Physiologically-Based Computer Simulation

  • Resarch Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Nonlinear oral absorption due to poor solubility often impedes drug development. The purpose of this study was to elucidate the rate-limiting process in oral absorption of Biopharmaceutical Classification System (BCS) class II (low solubility–high permeability) drugs in order to predict nonlinear absorption of dose caused by solubility-limited absorption.

Methods

Oral absorption of danazol, griseofulvin, and aprepitant was predicted from a miniscale dissolution test and a physiologically-based model. The effect of particle size reduction and dose increase on absorption was investigated in vitro and in vivo to clarify the rate-limiting steps of dissolution-rate-limited and solubility-limited absorption.

Results

The rate-limiting steps of oral absorption were simulated and increase in the dissolution rate and administration dose showed a shift from dissolution rate-limited to solubility-limited absorption. In the study in dogs, particle size reduction improved the oral absorption of large particle drugs but had little effect on small particle drugs. Dose nonlinearity was observed with small particles at a high dose. Our model quantitatively predicted results observed in vivo, including but not exclusively, dissolution-rate-limited and solubility-limited absorption.

Conclusion

The present study provides a powerful tool to predict dose nonlinearity and will aid in the success of BCS class II drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. A. Lipinski. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods. 44:235–249 (2000). DOI 10.1016/S1056-8719(00)00107-6.

    Article  PubMed  CAS  Google Scholar 

  2. L. X. Yu. An integrated model for determining causes of poor oral drug absorption. Pharm. Res. 16:1883–1887 (1999). DOI 10.1023/A:1018911728161.

    Article  PubMed  CAS  Google Scholar 

  3. K. Sugano, A. Okazaki, S. Sugimoto, S. Tavornvipas, A. Omura, and T. Mano. Solubility and dissolution profile assessment in drug discovery. Drug Metab. Pharmacokinet. 22:225–254 (2007). DOI 10.2133/dmpk.22.225.

    Article  PubMed  CAS  Google Scholar 

  4. B. Agoram, W. S. Woltosz, and M. B. Bolger. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev. 50(Suppl 1):S41–S67 (2001). DOI 10.1016/S0169-409X(01)00179-X.

    Article  PubMed  CAS  Google Scholar 

  5. G. M. Grass, and P. J. Sinko. Physiologically-based pharmacokinetic simulation modelling. Adv. Drug Deliv. Rev. 54:433–451 (2002). DOI 10.1016/S0169-409X(02)00013-3.

    Article  PubMed  CAS  Google Scholar 

  6. R. Takano, K. Sugano, A. Higashida, Y. Hayashi, M. Machida, Y. Aso, and S. Yamashita. Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm. Res. 23:1144–1156 (2006). DOI 10.1007/s11095-006-0162-4.

    Article  PubMed  CAS  Google Scholar 

  7. A. A. Noyes, and W. R. Whitney. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19:930–934 (1987). DOI 10.1021/ja02086a003.

    Article  Google Scholar 

  8. W. L. Hayton. Rate-limiting barriers to intestinal drug absorption: a review. J. Pharmacokinet. Biopharm. 8:321–334 (1980). DOI 10.1007/BF01059381.

    Article  PubMed  CAS  Google Scholar 

  9. J. H. Kou, D. Fleisher, and G. L. Amidon. Calculation of the aqueous diffusion layer resistance for absorption in a tube: application to intestinal membrane permeability determination. Pharm. Res. 8:298–305 (1991). DOI 10.1023/A:1015829128646.

    Article  PubMed  CAS  Google Scholar 

  10. H. Lennernas. Human intestinal permeability. J. Pharm. Sci. 87:403–410 (1998). DOI 10.1021/js970332a.

    Article  PubMed  CAS  Google Scholar 

  11. M. D. Levitt, T. Aufderheide, C. A. Fetzer, J. H. Bond, and D. G. Levitt. Use of carbon monoxide to measure luminal stirring in the rat gut. J. Clin. Invest. 74:2056–2064 (1984). DOI 10.1172/JCI111629.

    Article  PubMed  CAS  Google Scholar 

  12. D. Winne, H. Gorig, and U. Muller. Closed rat jejunal segment in situ: role of pre-epithelial diffusion resistance (unstirred layer) in the absorption process and model analysis. Naunyn. Schmiedebergs Arch. Pharmacol. 335:204–215 (1987). DOI 10.1007/BF00177725.

    Article  PubMed  CAS  Google Scholar 

  13. D. Winne. Unstirred layer thickness in perfused rat jejunum in vivo. Experientia. 32:1278–1279 (1976). DOI 10.1007/BF01953092.

    Article  PubMed  CAS  Google Scholar 

  14. K. Obata, K. Sugano, R. Saitoh, A. Higashida, Y. Nabuchi, M. Machida, and Y. Aso. Prediction of oral drug absorption in humans by theoretical passive absorption model. Int. J. Pharm. 293:183–192 (2005). DOI 10.1016/j.ijpharm.2005.01.005.

    Article  PubMed  CAS  Google Scholar 

  15. M. D. Levitt, J. K. Furne, A. Strocchi, B. W. Anderson, and D. G. Levitt. Physiological measurements of luminal stirring in the dog and human small bowel. J Clin. Invest. 86:1540–1547 (1990). DOI 10.1172/JCI114873.

    Article  PubMed  CAS  Google Scholar 

  16. J. B. Dressman. Comparison of canine and human gastrointestinal physiology. Pharm. Res. 3:123–131 (1986). DOI 10.1023/A:1016353705970.

    Article  CAS  Google Scholar 

  17. T. T. Kararli. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16:351–380 (1995). DOI 10.1002/bdd.2510160502.

    Article  PubMed  CAS  Google Scholar 

  18. A. Scholz, E. Kostewicz, B. Abrahamsson, and J. B. Dressman. Can the USP paddle method be used to represent in-vivo hydrodynamics? J. Pharm. Pharmacol. 55:443–451 (2003). DOI 10.1211/002235702946.

    Article  PubMed  CAS  Google Scholar 

  19. L. Kalantzi, E. Persson, B. Polentarutti, B. Abrahamsson, K. Goumas, J. B. Dressman, and C. Reppas. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm. Res. 23:1373–1381 (2006). DOI 10.1007/s11095-006-0207-8.

    Article  PubMed  CAS  Google Scholar 

  20. N. A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennernas, A. S. Hussain, H. E. Junginger, S. A. Stavchansky, K. K. Midha, V. P. Shah, and G. L. Amidon. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharm. 1:85–96 (2004). DOI 10.1021/mp034006h.

    Article  PubMed  CAS  Google Scholar 

  21. S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev. 56:275–300 (2004). DOI 10.1016/j.addr.2003.10.020.

    Article  PubMed  CAS  Google Scholar 

  22. P. C. Porter, J. F. Cuine, and W. N. Charman. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. Drug Deliv. Rev. 60:673–691 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. R. J. Chokshi, H. Zia, H. K. Sandhu, N. H. Shah, and W. A. Malick. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons. Drug Deliv. 14:33–45 (2007). DOI 10.1080/10717540600640278.

    Article  PubMed  CAS  Google Scholar 

  24. V. J. Stella, S. Martodihardjo, and V. M. Rao. Aqueous solubility and dissolution rate does not adequately predict in vivo performance: a probe utilizing some N-acyloxymethyl phenytoin prodrugs. J. Pharm. Sci. 88:775–779 (1999). DOI 10.1021/js980489i.

    Article  PubMed  CAS  Google Scholar 

  25. E. Nicolaides, M. Symillides, J. B. Dressman, and C. Reppas. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm. Res. 18:380–388 (2001). DOI 10.1023/A:1011071401306.

    Article  PubMed  CAS  Google Scholar 

  26. M. Kataoka, Y. Masaoka, Y. Yamazaki, T. Sakane, H. Sezaki, and S. Yamashita. In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugs. Pharm. Res. 20:1674–1680 (2003). DOI 10.1023/A:1026107906191.

    Article  PubMed  CAS  Google Scholar 

  27. A. L. Ungell, S. Nylander, S. Bergstrand, A. Sjoberg, and H. Lennernas. Membrane transport of drugs in different regions of the intestinal tract of the rat. J. Pharm. Sci. 87:360–366 (1998). DOI 10.1021/js970218s.

    Article  PubMed  CAS  Google Scholar 

  28. R. J. Hintz, and K. C. Johnson. The effect of particle size distribution on dissolution rate and oral absorption. Int. J. Pharm. 51:9–17 (1989). DOI 10.1016/0378-5173(89)90069-0.

    Article  CAS  Google Scholar 

  29. A. Okazaki, T. Mano, and K. Sugano. Theoretical dissolution model of poly-disperse drug particles in biorelevant media. J. Pharm. Sci. 97:1843–1852 (2007). DOI 10.1002/jps.21070.

    Article  Google Scholar 

  30. E. Galia, E. Nicolaides, D. Horter, R. Lobenberg, C. Reppas, and J. B. Dressman. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res. 15:698–705 (1998). DOI 10.1023/A:1011910801212.

    Article  PubMed  CAS  Google Scholar 

  31. W. L. Chiou, H. Y. Jeong, S. M. Chung, and T. C. Wu. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm. Res. 17:135–140 (2000). DOI 10.1023/A:1007552927404.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to express our gratitude to Mr. Tessai Yamamoto for his helpful contribution to the plasma concentration analysis, Dr. Motohiro Kato for his help in the deconvolution analysis, Ms Atsuko Higashida for her help in the Caco-2 experiments, the pharmaceutical profiling group members for their help with the in vivo experiments, and Mr. Shoichi Higo for his helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryusuke Takano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano, R., Furumoto, K., Shiraki, K. et al. Rate-Limiting Steps of Oral Absorption for Poorly Water-Soluble Drugs in Dogs; Prediction from a Miniscale Dissolution Test and a Physiologically-Based Computer Simulation. Pharm Res 25, 2334–2344 (2008). https://doi.org/10.1007/s11095-008-9637-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9637-9

KEY WORDS

Navigation