Skip to main content
Log in

Telithromycin Pharmacokinetics in Rat Model of Diabetes Mellitus Induced by Alloxan or Streptozotocin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

It has been reported that telithromycin is primarily metabolized via hepatic CYP3A1/2 in rats, the expression and/or mRNA level of hepatic CYP3A1/2 increase in rat model of diabetes mellitus induced by alloxan (DMIA) or streptozotocin (DMIS), and intestinal CYP3A1/2 enzyme activity decreases in rat model of DMIS. Thus, the pharmacokinetic changes of telithromycin in both models of diabetes mellitus compared with those in the control rats were evaluated.

Methods

Telithromycin was administered (50 mg/kg) intravenously or orally to both rat models of diabetes and their respective control rats.

Results

After intravenous administration of telithromycin to both models of diabetes, the non-renal clearance (CLNR) was significantly faster (32.3 and 53.1% increase for rat models of DMIA and DMIS, respectively) and the AUC was significantly smaller (25.0 and 33.8% decrease, respectively) than those in their respective controls. However, after oral administration of telithromycin, the AUC was comparable to that in their respective controls.

Conclusions

The faster CLNR after intravenous administration was due to increased hepatic CYP3A1/2 in both models of diabetes. The comparable AUC after oral administration was mainly due to decreased intestinal CYP3A1/2 activity. Alloxan and streptozotocin appear to influence some pharmacokinetics of telithromycin in a different fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. S. Champney, and C. L. Tober. Inhibition of translation and 50S ribosomal subunit formation in Staphylococcus aureus cells by 11 different ketolide antibiotics. Curr. Microbiol. 37:418–425 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. C. Agouridas, A. Bonnefoy, and J. F. Chantot. In vivo antibacterial activity of HMR3647, a novel ketolide highly active against respiratory pathogens, In Fourth International Conference on Macrolides, Azalides, Streptogramins and Ketolides. Barcelona, Spain, 1998, pp. 21–23.

  3. P. M. Roblin, and M. R. Hammerschlag. In vitro activity of a new ketolide antibiotic, HMR 3647, against Chlamydia pneumoniae. Antimicrob. Agents Chemother. 42:1515–1516 (1998).

    PubMed  CAS  Google Scholar 

  4. C. Perret, B. Lenfant, E. Weinling, D. H. Wessels, H. E. Scholtz, G. Montay, and E. Sultan. Pharmacokinetics and absolute oral bioavailability of an 800-mg oral dose of telithromycin in healthy young and elderly volunteers. Chemotherapy. 48:217–223 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. G. G. Zhanel, M. Walters, A. Noreddin, L. M. Vercaigne, A. Wierzbowski, J. M. Embil, A. S. Gin, S. Douthwaite, and D. J. Hoban. The ketolides: a critical review. Drugs. 62:1771–1804 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. K. E. Thummel, D. D. Shen, N. Isoherranen, and H. E. Smith. Appendices II. Design and optimization of dosage regimens: pharmacokinetic data. In L. L. Brunton, J. S. Lazo, and K. L. Parker (eds.), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11McGraw-Hill, New York, 2006, p. 1876.

    Google Scholar 

  7. J. H. Lee, and M. G. Lee. Effects of acute renal failure on the pharmacokinetics of telithromycin in rats: negligible effects of increase in CYP3A1 on the metabolism of telithromycin. Biopharm. Drug Dispos. 28:157–166 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Y. C. Kim, A. K. Lee, J. H. Lee, I. Lee, D. C. Lee, S. H. Kim, S. G. Kim, and M. G. Lee. Pharmacokinetics of theophylline in diabetes mellitus rats: induction of CYP1A2 and CYP2E1 on 1,3-dimethyluric acid formation. Eur. J. Pharm. Sci. 26:114–123 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. L. A. Reinke, S. J. Stohs, and H. Rosenberg. Altered activity of hepatic mixed-function mono-oxygenase enzymes in streptozotocin-induced diabetic rats. Xenobiotica. 8:611–619 (1978).

    PubMed  CAS  Google Scholar 

  10. T. Borbás, B. Benkö, B. Dalmadi, I. Szabó, and K. Tihanyi. Insulin in flavin-containing monooxygenase regulation. Flavin-containing monooxygenase and cytochrome P450 activities in experimental diabetes. Eur. J. Pharm. Sci. 28:51–58 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. N. Shimojo, T. Ishizaki, S. Imaoka, Y. Funae, S. Fujii, and K. Okuda. Changes in amounts of cytochrome P450 isozymes and levels of catalytic activities in hepatic and renal microsomes of rats with streptozocin-induced diabetes. Biochem. Pharmacol. 46:621–627 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. J.B. Watkins Jr, and R. A. Sanders. Diabetes mellitus-induced alterations of hepatobiliary function. Pharmacol. Rev. 47:1–23 (1995).

    PubMed  Google Scholar 

  13. M. Falguera, M. Martin, A. Ruiz-Gonzalez, R. Pifarre, and M. Garcia. Community-acquired pneumonia as the initial manifestation of serious underlying diseases. Am. J. Med. 118:378–383 (2005).

    Article  PubMed  Google Scholar 

  14. J. H. Lee, and M. G. Lee. Dose-dependent pharmacokinetics of telithromycin after intravenous and oral administration to rats: contribution of intestinal first-pass effect to low bioavailability. J Pharm Pharm Sci. 10:37–50 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. J. M. Park, C. H. Moon, and M. G. Lee. Pharmacokinetic changes of methotrexate after intravenous administration to streptozotocin-induced diabetes mellitus rats. Res. Commun. Mol. Pathol. Pharmacol. 93:343–352 (1996).

    PubMed  CAS  Google Scholar 

  16. J. Z. Peng, R. P. Remmel, and R. K. Sawchuk. Inhibition of murine cytochrome P4501A by tacrine: in vitro studies. Drug Metab. Dispos. 32:805–812 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72:248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  18. P. H. Edelstein, and M. A. Edelstein. In vitro activity of the ketolide HMR 3647 (RU 6647) for Legionella spp., its pharmacokinetics in guinea pigs, and use of the drug to treat guinea pigs with Legionella pneumophila pneumonia. Antimicrob. Agents Chemother. 43:90–95 (1999).

    PubMed  CAS  Google Scholar 

  19. R. G. Duggleby. Analysis of enzyme progress curves by nonlinear regression. Methods Enzymol. 249:61–90 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. S. H. Kim, Y. M. Choi, and M. G. Lee. Pharmacokinetics and pharmacodynamics of furosemide in protein-calorie malnutrition. J. Pharmacokinet. Biopharm. 21:1–17 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. F. D. Boudinot, and W. J. Jusko. Fluid shifts and other factors affecting plasma protein binding of prednisolone by equilibrium dialysis. J. Pharm. Sci. 73:774–780 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. S. Øie, and T. W. Guentert. Comparison of equilibrium time in dialysis experiments using spiked plasma or spiked buffer. J. Pharm. Sci. 71:127–128 (1982).

    Article  PubMed  Google Scholar 

  23. W. L. Chiou. Critical evaluation of the potential error in pharmacokinetic studies using the linear trapezoidal rule method for the calculation of the area under the plasma level–time curve. J. Pharmacokinet. Biopharm. 6:539–546 (1978).

    Article  PubMed  CAS  Google Scholar 

  24. M. Gibaldi, and D. Perrier. Pharmacokinetics. second edn. Marcel-Dekker, New York, 1982.

    Google Scholar 

  25. H. Lineweaver, and D. Burk. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56:658–666 (1934).

    Article  CAS  Google Scholar 

  26. G. R. Wilkinson, and D. G. Shand. A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther. 18:377–390 (1975).

    PubMed  CAS  Google Scholar 

  27. H. Sato, T. Terasaki, K. Okumura, and A. Tsuji. Effect of receptor-up-regulation on insulin pharmacokinetics in streptozotocin-treated diabetic rats. Pharm. Res. 8:563–569 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. M. G. Lee, and W. L. Chiou. Evaluation of potential causes for the incomplete bioavailability of furosemide: gastric first-pass metabolism. J. Pharmacokinet. Biopharm. 11:623–640 (1983).

    Article  PubMed  CAS  Google Scholar 

  29. P. D. Lucas, and J. M. Foy. Effects of experimental diabetes and genetic obesity on regional blood flow in the rat. Diabetes. 26:786–792 (1977).

    Article  PubMed  CAS  Google Scholar 

  30. M. A. Hill, and R. G. Larkins. Alterations in distribution of cardiac output in experimental diabetes in rats. Am. J. Physiol. 257:H571–H580 (1989).

    PubMed  CAS  Google Scholar 

  31. P. B. Inskeep, A. E. Reed, and R. A. Ronfeld. Pharmacokinetics of zopolrestat, a carboxylic acid aldose reductase inhibitor, in normal and diabetic rats. Pharm. Res. 8:1511–1515 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. D. Y. Lee, M. G. Lee, H. S. Shin, and I. Lee. Changes in omeprazole pharmacokinetics in rats with diabetes induced by alloxan or streptozotocin: Faster clearance of omeprazole due to induction of hepatic CYP1A2 and 3A1. J. Pharm. Pharm. Sci. 10:420–433 (2007).

    PubMed  CAS  Google Scholar 

  33. Z. Wang, S. D. Hall, J. F. Maya, L. Li, A. Asghar, and J. C. Gorski. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol. 55:77–85 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. G. R. Matzke, R. F. Frye, J. J. Early, R. J. Straka, and S. W. Carson. Evaluation of the influence of diabetes mellitus on antipyrine metabolism and CYP1A2 and CYP2D6 activity. Pharmacotherapy 20:182–190 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Sanofi-Aventis group for the supply of telithromycin. This study was supported in part by 2007 BK21 Project for Applied Pharmaceutical Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung G. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Lee, M.G. Telithromycin Pharmacokinetics in Rat Model of Diabetes Mellitus Induced by Alloxan or Streptozotocin. Pharm Res 25, 1915–1924 (2008). https://doi.org/10.1007/s11095-008-9610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9610-7

KEY WORDS

Navigation