Skip to main content

Advertisement

Log in

Pharmacokinetic assessment of cefpodoxime proxetil in diabetic rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

In diabetes, multi-organ level dysfunction arising from metabolic complications is reported to influence the pharmacokinetics (PK) profile of many drugs. Hence, the present study was planned in rats to evaluate the effect of diabetes on the PK profile of cefpodoxime, a widely prescribed oral antibiotic.

Method

PK profile of cefpodoxime was assessed after oral administration of cefpodoxime proxetil (10 and 20 mg/kg) and intravenous (i.v) administration of cefpodoxime sodium (10 mg/kg) in normal and streptozotocin induced diabetic rats. To evaluate the impact of diabetes on oral absorption and serum protein binding, in situ intestinal permeability and in vitro serum protein binding studies were performed for cefpodoxime using Single Pass Intestinal Perfusion model (SPIP) and ultracentrifugation technique, respectively.

Result

In diabetic rats, there was significant (p < 0.01) decrease in maximum concentration (Cmax) and area under the curve (AUC) of cefpodoxime by both oral and intravenous route, which was attributed to augmented clearance of cefpodoxime. There was no change in the time to achieve Cmax (Tmax) suggesting no alteration in oral absorption which was further confirmed through unaltered intestinal permeability in diabetic rats. The protein binding in diabetic rats also remained unchanged, indicating no influence of protein binding on elevated clearance.

Conclusion

The plasma exposure of cefpodoxime, a renally eliminated drug was significantly lowered in diabetic rats due to enhanced glomerular filtration. However, this observation needs to be confirmed through well controlled clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Upon request.

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009;32(Suppl 1):62–7.

    Article  Google Scholar 

  2. Casqueiro J, Casqueiro J, Alves C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J Endocrinol Metab. 2012;16(Suppl1):27–36.

    Google Scholar 

  3. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3–4):259–65.

    Article  CAS  PubMed  Google Scholar 

  4. Peleg AY, Weerarathna T, McCarthy JS, Davis TM. Common infections in diabetes: pathogenesis, management, and relationship to glycaemic control. Diabetes Metab Res Rev. 2007;23(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  5. Akash MSH, Rehman K, Fiayyaz F, Sabir S, Khurshid M. Diabetes-associated infections: development of antimicrobial resistance and possible treatment strategies. Arch Microbiol. 2020;202(5):953–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Polk C, Sampson MM, Roshdy D, Davidson LE. Skin and soft tissue infections in patients with diabetes mellitus. Infect Dis Clin. 2021;35(1):183–97.

    Article  Google Scholar 

  7. Balakrishna P, Shah D, Kishore G, Keerthi S. A Study on the use of cephalosporins in patients with diabetic foot infections. Indian J Pharm Pract. 2014;7(4):27–32.

    Article  Google Scholar 

  8. Frampton JE, Brogden RN, Langtry HD, Buckley MM. Cefpodoxime proxetil. A review of its antibacterial activity, pharmacokinetic properties, and therapeutic potential. Drugs. 1992;44(5):889–917.

    Article  CAS  PubMed  Google Scholar 

  9. Todd WM. Cefpodoxime Proxetil: a comprehensive review. Int J Antimicrob Agents. 1994;4(1):37–62.

    Article  CAS  PubMed  Google Scholar 

  10. Kakumanu VK, Arora V, Bansal A. Investigation on physiochemical and biological differences of Cefpodoxime proxetil enantiomers. Eur J Pharm Biopharm. 2006;64:255–9.

    Article  CAS  PubMed  Google Scholar 

  11. Pahwa R, Rana A, Dhiman S, Negi P, Singh I. Cefpodoxime proxetil: An update on analytical, Clinical and pharmacological aspects. J Curr Chem Pharm Sc. 2015;5(2):56–66.

    CAS  Google Scholar 

  12. Gwilt PR, Nahhas RR, Tracewell WG. The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin Pharmacokinet. 1991;20(6):477–90.

    Article  CAS  PubMed  Google Scholar 

  13. McKinnon PS, Davis SL. Pharmacokinetic and pharmacodynamic issues in the treatment of bacterial infectious diseases. Eur J Clin Microbiol Infect Dis. 2004;23(4):271–88.

    Article  CAS  PubMed  Google Scholar 

  14. Abhishek G, Ashish D, Sumit S, Priya W, Utpal N. Effect of disease state on the pharmacokinetics of bedaquiline in renal-impaired and diabetic rats. ACS Omega. 2021;6(10):6934–41.

    Article  Google Scholar 

  15. Lee JH, Lee MG. Telithromycin pharmacokinetics in rat model of diabetes mellitus induced by alloxan or streptozotocin. Pharma Res. 2008;25(8):1915–24.

    Article  CAS  Google Scholar 

  16. Eun HG, Hee YY, So HK. Effects of diabetes mellitus on the disposition of tofacitinib, a janus kinase inhibitor, in rat. Biomol Ther. 2020;28(4):361–9.

    Article  Google Scholar 

  17. Yao H, Gu J, Shan Y, Wang Y, Chen X, Sun D, Guo Y. Type 2 diabetes mellitus decreases systemic exposure of clopidogrel active metabolite through upregulation of P-glycoprotein in rats. Biochem Pharmacol. 2020;180:114142.

    Article  CAS  PubMed  Google Scholar 

  18. Kurji HA, Ghareeb MM, Numan AT, Abdulrazzak MH, Hussain SA. Serum levels and pharmacokinetic parameters of single oral dose of amoxicillin in type 2 diabetic patients. IRJP. 2011;2(12):261–3.

    CAS  Google Scholar 

  19. Daniyan MO, Omoruyi SI, Onyeji CO, Iwalewa EO, Obuotor EM. Pharmacokinetic changes of halofantrine in experimentally-induced diabetes mellitus following oral drug administration. Afr J Biotechnol. 2008;7(9):1226–34.

    Google Scholar 

  20. Ahn CY, Bae SK, Bae SH, Kim T, Jung YS, Kim YC, Lee MG, Shin WG. Pharmacokinetics of oltipraz in diabetic rats with liver cirrhosis. Br J Pharmacol. 2009;156(6):1019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruslami R, Nijland HM, Adhiarta IG, Kariadi HK, Alisjahbana B, Aarnoutse RE, Crevel RV. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.

    Article  CAS  PubMed  Google Scholar 

  22. Venkateswaran S, Pari L. Antioxidant effect of phaseolus vulgaris in Streptozotocin–induced diabetic rats. Asia Pac J Clin Nutr. 2002;11:206–9.

    Article  PubMed  Google Scholar 

  23. Salphati L, Childers K, Pan L, Tsutsui K, Takahashi L. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J Pharm Pharmacol. 2001;53(7):1007–13.

    Article  CAS  PubMed  Google Scholar 

  24. Nagare N, Damre A, Singh KS, Mallurwar SR, Iyer S, Naik A, Chintamaneni M. Determination of site of absorption of propranolol in rat gut using in situ single-pass intestinal perfusion. Indian J Pharm Sci. 2010;72(5):625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000;44(1):301–12.

    Article  CAS  PubMed  Google Scholar 

  26. Dahan A, West BT, Amidon GL. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat. Eur J Pharm Sci. 2009;36(2–3):320–9.

    Article  CAS  PubMed  Google Scholar 

  27. Auckenthaler R (2002) Pharmacokinetics and pharmacodynamics of oral beta-lactam antibiotics as a two-dimensional approach to their efficacy. J Antimicrob Chemother 50(Suppl):13–7.

  28. Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes. 2015;8:181–8.

    PubMed  PubMed Central  Google Scholar 

  29. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–46.

    CAS  PubMed  Google Scholar 

  30. King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166(3):877–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bauernfeind A, Jungwirth R, Eberlein E, Klesel N, Adam F, Isert D, Limbert M, Markus A, Schrinner E, Seibert G. RU 29 246, the active compound of the cephalosporin-prodrug-ester HR 916. I. Antibacterial activity in vitro. J Antibiot (Tokyo). 1992;45(4):505–20.

    Article  CAS  PubMed  Google Scholar 

  32. Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 2012;51(8):481–99.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia G, Vidal EL, Trujillo H. Serum levels and urinary concentrations of kanamicin, bekanamicin and amikacin (BB–K8) in diabetic children and a control group. J Int Med Res. 1977;5(5):322–9.

    Article  CAS  PubMed  Google Scholar 

  34. Arredondo G, Suárez E, Calvo R, Vazquez JA, García-Sanchez J, Martinez-Jordá R. Serum protein binding of itraconazole and fluconazole in patients with diabetes mellitus. J Antimicrob Chemother. 1999;43(2):305–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Wockhardt Research Centre, India and Dr. Mahesh Patel for granting permission for performing these studies.

Author information

Authors and Affiliations

Authors

Contributions

Anasuya Patel and Deepak Prabhakar Bhagwat conceived and designed the research. Garima Mittal and Priyanka Jakhar conducted the experiments and analyzed the data. Garima Mittal wrote the manuscript. All authors approved the manuscript and all data were generated in-house and the authors stated that no paper mill was used.

Corresponding author

Correspondence to Garima Mittal.

Ethics declarations

Ethical approval

These study protocols were approved by the Institutional animal ethics committee of Wockhardt Research Centre, India registered under Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), India.

Consent to participate

Does not apply.

Consent for publication

Does not apply.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, G., Jakhar, P., Patel, A. et al. Pharmacokinetic assessment of cefpodoxime proxetil in diabetic rats. J Diabetes Metab Disord 22, 385–392 (2023). https://doi.org/10.1007/s40200-022-01156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01156-3

Keywords

Navigation