Skip to main content
Log in

Potential Oral Delivery of 7-Ethyl-10-Hydroxy-Camptothecin (SN-38) using Poly(amidoamine) Dendrimers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate potential application of poly(amidoamine) (PAMAM) dendrimers for improving the delivery of SN-38.

Methods

Complexes of SN-38 with generation 4 amine terminated PAMAM dendrimers were synthesized with varying amounts of drug. Stability of the complexes as well as influence of complexation on permeability across and cellular uptake by Caco-2 cells was evaluated.

Results

The complexes were stable at pH 7.4 and drug was released at pH 5. A tenfold increase in permeability and more than hundredfold increase in cellular uptake of the complexes with respect to free SN-38 was observed.

Conclusions

Studies suggest that complexation with PAMAM dendrimers has the potential to improve the oral bioavailability of SN-38.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Ulukan, and P. W. Swaan. Camptothecins: a review of their chemotherapeutic potential. Drugs. 62:2039–2057 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. Y. Shimada, M. Rothenberg, S. G. Hilsenbeck, H. A. Burris III, D. Degen, and D. D. Von Hoff. Activity of CPT-11 (irinotecan hydrochloride), a topoisomerase I inhibitor, against human tumor colony-forming units. Anticancer Drugs. 5:202–206 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. P. J. Houghton, P. J. Cheshire, J. C. Hallman, M. C. Bissery, A. Mathieu-Boue, and J. A. Houghton. Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against human tumor xenografts: lack of cross-resistance in vivo in tumors with acquired resistance to the topoisomerase I inhibitor 9-dimethylaminomethyl-10-hydroxycamptothecin. Cancer Res. 53:2823–2829 (1993).

    PubMed  CAS  Google Scholar 

  4. P. Calabresi, B. A. Chabner, J. G. Hardman, and L. E. Limbird. Chemotherapy of Neoplastic Diseases, Goodman & Gilman's: The Pharmacological Basis of Therapeutics. 10McGraw-Hill (Medical Publishing Division), New York, 2001, p. 1424.

    Google Scholar 

  5. H. Ulukan, M. T. Muller, and P. W. Swaan. Downregulation of topoisomerase I in differentiating human intestinal epithelial cells. Int. J. Cancer. 94:200–207 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. M. C. Haaz, L. Rivory, C. Riche, L. Vernillet, and J. Robert. Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res. 58:468–472 (1998).

    PubMed  CAS  Google Scholar 

  7. W. Yamamoto, J. Verweij, P. de Bruijn, M. J. de Jonge, H. Takano, M. Nishiyama, M. Kurihara, and A. Sparreboom. Active transepithelial transport of irinotecan (CPT-11) and its metabolites by human intestinal Caco-2 cells. Anticancer Drugs. 12:419–432 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. K. M. Kitchens, A. B. Foraker, R. B. Kolhatkar, P. W. Swaan, and H. Ghandehari. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm. Res. 24:2138–2145 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. K. M. Kitchens, M. E. El-Sayed, and H. Ghandehari. Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Adv. Drug Deliv. Rev. 57:2163–2176 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. M. El-Sayed, M. Ginski, C. Rhodes, and H. Ghandehari. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Rel. 81:355–365 (2002).

    Article  CAS  Google Scholar 

  11. M. Najlah, S. Freeman, D. Attwood, and A. D'Emanuele. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int. J. Pharm. 336:183–190 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. A. D'Emanuele, R. Jevprasesphant, J. Penny, and D. Attwood. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Rel. 95:447–453 (2004).

    Article  Google Scholar 

  13. R. Wiwattanapatapee, B. Carreno-Gomez, N. Malik, and R. Duncan. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res. 17:991–998 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. M. El-Sayed, M. Ginski, C. Rhodes, and H. Ghandehari. Influence of surface chemistry of poly(amidoamine) dendrimers on Caco-2 cell monolayers. J. Bioact. Comp. Polym. 18:7–22 (2003).

    Article  CAS  Google Scholar 

  15. K. M. Kitchens, R. B. Kolhatkar, P. W. Swaan, N. D. Eddington, and H. Ghandehari. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm. Res. 23:2818–2826 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. R. B. Kolhatkar, K. M. Kitchens, P. W. Swaan, and H. Ghandehari. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconj. Chem. 18:2054–2060 (2007).

    Article  CAS  Google Scholar 

  17. R. Duncan. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer. 6:688–701 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. F. Heath, P. Haria, and C. Alexander. Varying polymer architecture to deliver drugs. AAPS J. 9:E235–E240 (2007).

    Article  PubMed  Google Scholar 

  19. M. El-Sayed, C. A. Rhodes, M. Ginski, and H. Ghandehari. Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. Int. J. Pharm. 265:151–157 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. I. Nabiev, F. Fleury, I. Kudelina, Y. Pommier, F. Charton, J. F. Riou, A. J. Alix, and M. Manfait. Spectroscopic and biochemical characterisation of self-aggregates formed by antitumor drugs of the camptothecin family: their possible role in the unique mode of drug action. Biochem. Pharmacol. 55:1163–1174 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. K. M. Solntsev, E. N. Sullivan, L. M. Tolbert, S. Ashkenazi, P. Leiderman, and D. Huppert. Excited-state proton transfer reactions of 10-hydroxycamptothecin. J. Am. Chem. Soc. 126:12701–12708 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. W. Chen, D. A. Tomalia, and J. Thomas. Unusual pH-dependant polarity changes in PAMAM dendrimers: evidence for pH-responsive conformational changes. Macromolecules. 33:9169–9172 (2000).

    Article  CAS  Google Scholar 

  23. A. K. Patri, J. F. Kukowska-Latallo, and J. R. Baker Jr. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Del. Rev. 57:2203–2214 (2005).

    Article  CAS  Google Scholar 

  24. T. Dutta, H. B. Agashe, M. Garg, P. Balakrishnan, M. Kabra, and N. K. Jain. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target. 15:89–98 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. R. S. Dhanikula, and P. Hildgen. Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate. Biomaterials. 28:3140–3152 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. C. Kojima, K. Kono, K. Maruyama, and T. Takagishi. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug. Chem. 11:910–917 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. D. Bhadra, S. Bhadra, S. Jain, and N. K. Jain. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm. 257:111–124 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. F. P. Seib, A. T. Jones, and R. Duncan. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J. Control. Rel. 117:291–300 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the efforts of Dr. Kelly Hom for assisting with NMR studies. Financial support was provided by the Department of Defense multidisciplinary postdoctoral fellowship award (W81XWH-06-1-0698) to Rohit Kolhatkar, a University System of Maryland Integrated Nanobio seed grant through the Maryland Department of Business and Economic Development and NIH R01EB07470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ghandehari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolhatkar, R.B., Swaan, P. & Ghandehari, H. Potential Oral Delivery of 7-Ethyl-10-Hydroxy-Camptothecin (SN-38) using Poly(amidoamine) Dendrimers. Pharm Res 25, 1723–1729 (2008). https://doi.org/10.1007/s11095-008-9572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9572-9

KEY WORDS

Navigation