Skip to main content

Advertisement

Log in

Dissolution Media Simulating Conditions in the Proximal Human Gastrointestinal Tract: An Update

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to update the compositions of biorelevant media to represent the composition and physical chemical characteristics of the gastrointestinal fluids as closely as possible while providing physical stability during dissolution runs and short-term storage.

Methods

Media were designed to reflect postprandial conditions in the stomach and proximal small intestine in the “early”, “middle”, and “late” phases of digestion. From these “snapshot” media, general media for simulating postprandial conditions were devised. Additionally, media reflecting preprandial conditions in the stomach and small intestine were revisited.

Results

A set of four media is presented. A recently published medium to represent the fasted stomach, FaSSGF, needed no further revision. To simulate the postprandial stomach, a new medium, FeSSGF, is presented. Media representing the upper small intestine in the fed and fasted states were fine-tuned according to physicochemical and biochemical characteristics in vivo. All four media proved to be stable under ambient storage conditions for at least 72 h as well as under usual dissolution test conditions.

Conclusions

The updated dissolution media can be used to predict formulation performance and food effects in vivo. These media are more physiologically relevant and show better physical stability than their corresponding predecessors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15:11–22 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. The United States Pharmacopeia. USP 29. United States Pharmacopeial Convention Inc., Rockville, MD (2006).

  3. E. Galia, J. Horton, and J. B. Dressman. Albendazole generics—a comparative in vitro study. Pharm. Res. 16:1871–1875 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. M. Vertzoni, E. Pastelli, D. Psachoulias, L. Kalantzi, and C. Reppas. Estimation of intragastric solubility of drugs: in what medium? Pharm. Res. 24:909–917 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. M. Vertzoni, J. Dressman, J. Butler, J. Hempenstall, and C. Reppas. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur. J. Pharm. Biopharm. 60:413–417 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. J. Krämer. Korrelation biopharmazeutischer in vivo und in vitro Daten von Theophyllin und Verapamil Retardpräparaten. Doctoral thesis, Ruprecht-Karls-University, Heidelberg, Germany, 1995.

  7. S. Klein, J. Butler, J. M. Hempenstall, C. Reppas, and J. B. Dressman. Media to simulate the postprandial stomach I. Matching the physicochemical characteristics of standard breakfasts. J. Pharm. Pharmacol. 56:605–610 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. P. Macheras, M. Koupparis, and C. Tsaprounis. Drug dissolution studies in milk using the automated flow injection serial dynamic dialysis technique. Int. J. Pharm. 33:125–136 (1986).

    Article  CAS  Google Scholar 

  9. P. E. Macheras, M. A. Koupparis, and S. G. Antimisiaris. Drug binding and solubility in milk. Pharm. Res. 7:537–541 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. E. Galia, E. Nicolaides, D. Hörter, R. Löbenberg, C. Reppas, and J. B. Dressman. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res. 15:698–705 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. E. Nicolaides, E. Galia, C. Efthymiopoulos, J. B. Dressman, and C. Reppas. Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm. Res. 16:1876–1882 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. G. Buckton, A. E. Beezer, S. M. Chatham, and K. K. Patel. In vitro dissolution testing of oral controlled release preparations in the presence of artificial foodstuffs. II. Probing drug food interactions using microcalorimetry. Int. J. Pharm. 56:151–157 (1989).

    Article  CAS  Google Scholar 

  13. P. E. Macheras, M. A. Koupparis, and S. G. Antimisiaris. Effect of temperature and fat content on the solubility of hydrochlorothiazide and chlorothiazide in milk. J. Pharm. Sci. 78:933–936 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. P. E. Macheras, M. A. Koupparis, and S. G. Antimisiaris. Effect of temperature and fat content on the binding of hydrochlorothiazide and chlorothiazide to milk. J. Pharm. Sci. 77:334–336 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. S. Anwar, J. T. Fell, and P. A. Dickinson. An investigation of the disintegration of tablets in biorelevant media. Int. J. Pharm. 290:121–127 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. N. Fotaki, M. Symillides, and C. Reppas. Canine versus in vitro data for predicting input profiles of l-sulpiride after oral administration. Eur. J. Pharm. Sci. 26:324–333 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. V. A. Gray, and J. B. Dressman. Change of pH requirements for simulated intestinal fluid TS. Pharmacop. Forum. 22:1943–1945 (1996).

    Google Scholar 

  18. J. B. Dressman, and C. Reppas. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. 11(2):S73–S80 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. H. Wei, and R. Löbenberg. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci. 29:45–52 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. V. H. Sunesen, B. L. Pedersen, H. G. Kristensen, and A. Müllertz. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur. J. Pharm. Sci. 24:305–313 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. J. Parojcic, Z. Ethuric, M. Jovanovic, S. Ibric, and D. Jovanovic. Influence of dissolution media composition on drug release and in vitro/in vivo correlation for paracetamol matrix tablets prepared with novel carbomer polymers. J. Pharm. Pharmacol. 56:735–741 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. K. Schamp, S. A. Schreder, and J. Dressman. Development of an in vitro/in vivo correlation for lipid formulations of EMD 50733, a poorly soluble, lipophilic drug substance. Eur. J. Pharm. Biopharm. 62:227–234 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. E. Nicolaides, M. Symillides, J. B. Dressman, and C. Reppas. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm. Res. 18:380–388 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. M. Vertzoni, N. Fotaki, E. Kostewicz, E. Stippler, C. Leuner, E. Nicolaides, J. Dressman, and C. Reppas. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J. Pharm. Pharmacol. 56:453–462 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. L. Kalantzi, K. Goumas, V. Kalioras, B. Abrahamsson, J. B. Dressman, and C. Reppas. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm. Res. 23:165–176 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. M. Grove, G. P. Pedersen, J. L. Nielsen, and A. Müllertz. Bioavailability of seocalcitol I: relating solubility in biorelevant media with oral bioavailability in rats-effect of medium and long chain triglycerides. J. Pharm. Sci. 94:1830–1838 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. C. J. Porter, N. L. Trevaskis, and W. N. Charman. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6:231–248 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. A. G. Hills. pH and Henderson–Hasselbalch equation. Am. J. Med. 55:131–133 (1973).

    Article  PubMed  CAS  Google Scholar 

  29. D. D. Van Slyke. On the measurement of buffer values on the relationship of buffer values to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J. Biol. Chem. 52:525–570 (1922).

    Google Scholar 

  30. R. Dolder. Ophthalmika. Wissenschaftliche Velagsgesellschaft mbH Stuttgart (1990).

  31. US FDA, US Department of Health and Human Services, Center for Drug Evaluation and Research, Guidance for Industry: Food-Effect Bioavailability and Fed Bioequivalence Studies, December 2002.

  32. J. B. Dressman, R. R. Berardi, L. C. Dermentzoglou, T. L. Russell, S. P. Schmaltz, J. L. Barnett, and K. M. Jarvenpaa. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm. Res. 7:756–761 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. T. L. Russell, R. R. Berardi, J. L. Barnett, L. C. Dermentzoglou, K. M. Jarvenpaa, S. P. Schmaltz, and J. B. Dressman. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm. Res. 10:187–196 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. L. Kalantzi, E. Persson, B. Polentarutti, B. Abrahamsson, K. Goumas, J. B. Dressman, and C. Reppas. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm. Res. 23:1373–1381 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. A. Albert, and E. Sargent. Ionization constants of acids and bases (Russian translation). Khimiya, Moscow, p. 139, 1964.

    Google Scholar 

  36. H. P. Fiedler. Lexikon der Hilfsstoffe, OVR Oberschwäbische Verlagsanstalt Ravensburg. Ravensburg, Germany, 1989.

    Google Scholar 

  37. S. Budavari. The Merck index 12. Merck Research Laboratories, Whitehouse Station, NJ, 1996.

    Google Scholar 

  38. J. Pellicer, V. García-Morales, and M. J. Hernández. On the demonstration of the Young–Laplace equation in introductory physics courses. Phys. Educ. 35:126–129 (2000).

    Article  Google Scholar 

  39. E. Galia. Physiologically based dissolution tests. Doctoral thesis, Johann Wolfgang Goethe University, Frankfurt am Main, Germany, 1999.

  40. K. J. MacGregor, J. K. Embleton, J. E. Lacy, E. A. Perry, L. J. Solomon, H. Seager, and C. W. Pouton. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv. Drug Deliv. Rev. 25:33–46 (1997).

    Article  CAS  Google Scholar 

  41. O. Hernell, J. E. Staggers, and M. C. Carey. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry. 29:2041–2056 (1990).

    Article  PubMed  CAS  Google Scholar 

  42. P. E. Luner. Wetting properties of bile salt solutions and dissolution media. J. Pharm. Sci. 89:382–395 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. E. Jantratid, N. Janssen, H. Chokshi, K. Tang, and J. B. Dressman. Designing biorelevant dissolution tests for lipid formulations: case example—lipid suspension of RZ-50. Eur. J. Pharm. Biopharm. in press (2008), DOI 10.1016/j.ejpb.2007.12.010.

  44. J. J. Sheng, N. A. Kasim, R. Chandrasekharan, and G. L. Amidon. Solubilization and dissolution of insoluble weak acid, ketoprofen: effects of pH combined with surfactant. Eur. J. Pharm. Sci. 29:306–314 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. J. Jinno, D. Oh, J. R. Crison, and G. L. Amidon. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant. J. Pharm. Sci. 89:268–274 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. S. Li, S. Wong, S. Sethia, H. Almoazen, Y. M. Joshi, and A. T. Serajuddin. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm. Res. 22:628–635 (2005).

    Article  PubMed  CAS  Google Scholar 

  47. C. Wu, and J. W. McGinity. Influence of an enteric polymer on drug release rates of theophylline from pellets coated with Eudragit RS 30D. Pharm. Dev. Technol. 8:103–110 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. E. T. Cole, R. A. Scott, A. L. Connor, I. R. Wilding, H. U. Petereit, C. Schminke, T. Beckert, and D. Cade. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharm. 231:83–95 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. O. S. Silva, C. R. Souza, W. P. Oliveira, and S. C. Rocha. In vitro dissolution studies of sodium diclofenac granules coated with Eudragit L-30D-55 by fluidized-bed system. Drug Dev. Ind. Pharm. 32:661–667 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. A. Trapani, V. Laquintana, N. Denora, A. Lopedota, A. Cutrignelli, M. Franco, G. Trapani, and G. Liso. Eudragit RS 100 microparticles containing 2-hydroxypropyl-beta-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur. J. Pharm. Sci. 30:64–74 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. T. Phaechamud, and G. C. Ritthidej. Sustained-release from layered matrix system comprising chitosan and xanthan gum. Drug Dev. Ind. Pharm. 33:595–605 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. K. G. Mooney, M. A. Mintun, K. J. Himmelstein, and V. J. Stella. Dissolution kinetics of carboxylic acids I: effect of pH under unbuffered conditions. J. Pharm. Sci. 70:13–22 (1981).

    Article  PubMed  CAS  Google Scholar 

  53. K. G. Mooney, M. A. Mintun, K. J. Himmelstein, and V. J. Stella. Dissolution kinetics of carboxylic acids II: effect of buffers. J. Pharm. Sci. 70:22–32 (1981).

    Article  PubMed  CAS  Google Scholar 

  54. S. S. Ozturk, B. O. Palsson, B. Donohoe, and J. B. Dressman. Kinetics of release from enteric-coated tablets. Pharm. Res. 5:550–565 (1988).

    Article  PubMed  CAS  Google Scholar 

  55. C. J. Porter, and W. N. Charman. In vitro assessment of oral lipid based formulations. Adv. Drug Deliv. Rev. 50(1):S127–S147 (2001).

    Article  PubMed  CAS  Google Scholar 

  56. J. E. Boni, R. S. Brickl, and J. Dressman. Is bicarbonate buffer suitable as a dissolution medium? J. Pharm. Pharmacol. 59:1375–1382 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. P. G. Welling. Effects of food on drug absorption. Annu. Rev. Nutr. 16:383–415 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. J. M. Custodio, C.-Y. Wu, and L. Z. Benet. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv. Drug Deliv. Rev. 60:717–733 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. S. Li, P. Doyle, S. Metz, A. E. Royce, and A. T. Serajuddin. Effect of chloride ion on dissolution of different salt forms of haloperidol, a model basic drug. J. Pharm. Sci. 94:2224–2231 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. R. Bodmeier, X. Guo, R. E. Sarabia, and P. F. Skultety. The influence of buffer species and strength on diltiazem HCl release from beads coated with the aqueous cationic polymer dispersions, Eudragit RS, RL 30D. Pharm. Res. 13:52–56 (1996).

    Article  PubMed  CAS  Google Scholar 

  61. K. Knop. Influence of buffer solution composition on drug release from pellets coated with neutral and quaternary acrylic polymers and on swelling of free polymer films. Eur. J. Pharm. Sci. 4:293–300 (1996).

    Article  CAS  Google Scholar 

  62. M. W. Rudolph, S. Klein, T. E. Beckert, H. Petereit, and J. B. Dressman. A new 5-aminosalicylic acid multi-unit dosage form for the therapy of ulcerative colitis. Eur. J. Pharm. Biopharm. 51:183–190 (2001).

    Article  PubMed  CAS  Google Scholar 

  63. M. C. Bonferoni, S. Rossi, F. Ferrari, E. Stavik, A. Pena-Romero, and C. Caramella. Factorial analysis of the influence of dissolution medium on drug release from carrageenan–diltiazem complexes. AAPS PharmSciTech. 1:E15 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. E. S. Kostewicz, U. Brauns, R. Becker, and J. B. Dressman. Forecasting the oral absorption behavior of poorly soluble weak bases using solubility and dissolution studies in biorelevant media. Pharm. Res. 19:345–349 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. X. Cai, D. J. Grant, and T. S. Wiedmann. Analysis of the solubilization of steroids by bile salt micelles. J. Pharm. Sci. 86:372–377 (1997).

    Article  PubMed  CAS  Google Scholar 

  66. S. D. Mithani, V. Bakatselou, C. N. TenHoor, and J. B. Dressman. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13:163–167 (1996).

    Article  PubMed  CAS  Google Scholar 

  67. M. Rosoff, and A. T. M. Serajuddin. Solubilization of diazepam in bile-salts and in sodium cholate–lecithin–water phases. Int. J. Pharm. 6:137–146 (1980).

    Article  CAS  Google Scholar 

  68. H. M. Jones, N. Parrott, G. Ohlenbusch, and T. Lave. Predicting pharmacokinetic food effects using biorelevant solubility media and physiologically based modelling. Clin. Pharmacokinet. 45:1213–1226 (2006).

    Article  PubMed  CAS  Google Scholar 

  69. P. E. Luner, and D. Vander Kamp. Wetting behavior of bile salt-lipid dispersions and dissolution media patterned after intestinal fluids. J. Pharm. Sci. 90:348–359 (2001).

    Article  PubMed  CAS  Google Scholar 

  70. P. E. Luner, and D. VanDer Kamp. Wetting characteristics of media emulating gastric fluids. Int. J. Pharm. 212:81–91 (2001).

    Article  PubMed  CAS  Google Scholar 

  71. D. Fleisher, C. Li, Y. Zhou, L. H. Pao, and A. Karim. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin. Pharmacokinet. 36:233–254 (1999).

    Article  PubMed  CAS  Google Scholar 

  72. W. N. Charman, C. J. Porter, S. Mithani, and J. B. Dressman. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J. Pharm. Sci. 86:269–282 (1997).

    Article  PubMed  CAS  Google Scholar 

  73. M. Armand, P. Borel, B. Pasquier, C. Dubois, M. Senft, M. Andre, J. Peyrot, J. Salducci, and D. Lairon. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am. J. Physiol. 271:G172–G183 (1996).

    PubMed  CAS  Google Scholar 

  74. M. Armand, B. Pasquier, M. Andre, P. Borel, M. Senft, J. Peyrot, J. Salducci, H. Portugal, V. Jaussan, and D. Lairon. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am. J. Clin. Nutr. 70:1096–1106 (1999).

    PubMed  CAS  Google Scholar 

  75. M. Armand. Lipases and lipolysis in the human digestive tract: where do we stand? Curr. Opin. Clin. Nutr. Metab. Care. 10:156–164 (2007).

    Article  PubMed  CAS  Google Scholar 

  76. K. Gyr, N. M. Agrawal, O. Felsenfeld, and R. G. Font. Comparative study of secretin and Lundh tests. Am. J. Dig. Dis. 20:506–512 (1975).

    Article  PubMed  CAS  Google Scholar 

  77. B. Lurie, B. Brom, S. Bank, B. Novis, and I. N. Marks. Comparative response of exocrine pancreatic secretion following a test meal and secretin-pancreozymin stimulation. Scand. J. Gastroenterol. 8:27–32 (1973).

    PubMed  CAS  Google Scholar 

  78. F. Carriere, C. Renou, V. Lopez, J. De Caro, F. Ferrato, H. Lengsfeld, A. De Caro, R. Laugier, and R. Verger. The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology. 119:949–960 (2000).

    Article  PubMed  CAS  Google Scholar 

  79. C. W. Pouton. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29:278–287 (2006).

    Article  PubMed  CAS  Google Scholar 

  80. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model. I. Controlling the rate of lipolysis by continuous addition of calcium. Eur. J. Pharm. Sci. 14:115–122 (2001).

    Article  PubMed  CAS  Google Scholar 

  81. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model. II: Evaluation of the model. Eur. J. Pharm. Sci. 14:237–244 (2001).

    Article  PubMed  CAS  Google Scholar 

  82. A. M. Kaukonen, B. J. Boyd, C. J. Porter, and W. N. Charman. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm. Res. 21:245–253 (2004).

    Article  PubMed  CAS  Google Scholar 

  83. A. M. Kaukonen, B. J. Boyd, W. N. Charman, and C. J. Porter. Drug solubilization behavior during in vitro digestion of suspension formulations of poorly water-soluble drugs in triglyceride lipids. Pharm. Res. 21:254–260 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer B. Dressman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantratid, E., Janssen, N., Reppas, C. et al. Dissolution Media Simulating Conditions in the Proximal Human Gastrointestinal Tract: An Update. Pharm Res 25, 1663–1676 (2008). https://doi.org/10.1007/s11095-008-9569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9569-4

KEY WORDS

Navigation