Skip to main content

Advertisement

Log in

Formulation of Hydrophilic Non-Aqueous Gel: Drug Stability in Different Solvents and Rheological Behavior of Gel Matrices

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study was aimed at formulating a hydrophilic non-aqueous gel for topical delivery of the model moisture-sensitive drug, minocycline hydrochloride (MH).

Methods

Stability study of MH dissolved in water and various hydrophilic non-aqueous solvents was performed over a period of four months in order to select a suitable non-aqueous solvent for MH gel. To improve MH stability, the effect of different cation additives on MH stability in the selected solvent was investigated. Non-aqueous gel matrices were prepared from three different types of hydrophilic polymers in glycerin-propylene glycol mixture with Mg2+ cation additive. Oscillatory shear rheometry was performed on the gel matrices using a cone-and-plate rheometer.

Results

MH stability was affected by the type of solvent employed and the duration of storage. Different cation additives affected the extent of MH stabilization through MH-cation complex formation. Rheological properties of the non-aqueous gel matrices were significantly affected by the type and concentration of polymer, and the vehicle ratios in the formulations.

Conclusions

MH stabilization could be achieved using the selected glycerin-propylene glycol mixture containing MgCl2. Gel matrix formulated using this solvent system and 3%w/w N-vinylacetamide/sodium acrylate copolymer had demonstrated the most favorable rheological properties as a gel for topical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Yoshioka, Y. Aso, and T. Terao. Effect of water mobility on drug hydrolysis rates in gelatin gels. Pharm. Res. 9(5):607–612 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. Y. L. Loukas, V. Vraka, and G. Gregoriadis. Drugs, in cyclodextrins, in liposomes: A novel approach to the chemical stability of drugs sensitive to hydrolysis. Int. J. Pharm. 162(1–2):137–142 (1998).

    Article  CAS  Google Scholar 

  3. V. Goulden, D. Glass, and W. J. Cunliffe. Safety of long-term high-dose minocycline in the treatment of acne. Brit. J. Dermatol. 134:693–695 (1996).

    CAS  Google Scholar 

  4. Y. Wu, and R. Fassihi. Stability of metronidazole, tetracycline HCl and famotidine alone or in combination. Int. J. Pharm. 290:1–13 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. J. M. Moreno-Cerezo, M. Córdoba-Díaz, D. Córdoba-Díaz, and M. Córdoba-Borrego. A stability study of tetracycline and tetracycline cyclodextrins in tablets using a new HPLC method. J. Pharmaceut. Biomed. 26:417–426 (2001).

    Article  CAS  Google Scholar 

  6. L. A. Mitscher. Degradation and structure proofs. In The Chemistry of Tetracycline Antibiotics, Medicinal Research Series, Vol 9. Marcel Dekker, New York, 1978, pp. 122–164.

  7. E. G. Remmers, G. M. Sieger, and A. P. Doerschuk. Some observations on the kinetics of the C·4 epimerization of tetracycline. J. Pharm. Sci. 52:752–756 (1963).

    Article  PubMed  CAS  Google Scholar 

  8. K. G. McEvoy (ed.). Tetracyclines. In AHFS Drug Information. American Society of Health-System Pharmacist, Maryland, 2006, pp. 440–467.

  9. T. H. El-Faham. Transdermal delivery of bromhexidine hydrochloride from various formulations through excised hairless mouse skin. S.T.P. Pharma Sci. 4(3):240–244 (1994).

    CAS  Google Scholar 

  10. T. H. El-Faham, and A. A. Massoud. Assessment of bromhexidine hydrochloride formulations in human dry eye patients. J. Control. Release 32(3):279–283 (1994).

    Article  CAS  Google Scholar 

  11. J. S. Hao, L. W. Chan, Z. X. Shen, and P. W. S. Heng. Complexation between PVP and Gantrez polymer and its effect on release and bioadhesive properties of the composite PVP/Gantrez films. Pharm. Dev. Technol. 9(4):379–386 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. L. W. Chan, K. T. Ong, and P. W. S. Heng. Novel film modifiers to alter the physical properties of composite ethylcellulose films. Pharm. Res. 22(3):476–489 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. B. W. Barry. Dermatological formulations. Percutaneous absorption. Marcel Dekker, New York, 1983.

    Google Scholar 

  14. D. S. Jones, A. D. Woolfson, and A. F. Brown. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int. J. Pharm. 151:223–233 (1997).

    Article  CAS  Google Scholar 

  15. M. T. Islam, N. Rodríguez-Hornedo, S. Ciotti, and C. Ackermann. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm. Res. 21(7):1192–1199 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. E. Lizaso, M. E. Muñoz, and A. Santamaría. Formation of gels in ethylcellulose solutions. An interpretation from dynamic viscoelastic results. Macromolecules 32:1883–1889 (1999).

    Article  CAS  Google Scholar 

  17. P. W. S. Heng, L. W. Chan, and K. T. Chow. Development of novel non-aqueous ethylcellulose gel matrices: rheological and mechanical characterization. Pharm. Res. 22(4):676–684 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. B. W. Barry, and M. C. Meyer. The rheological properties of carbopol gels II. Oscillatory properties of carbopol gels. Int. J. Pharm. 2:27–40 (1979).

    Article  CAS  Google Scholar 

  19. J. T. Carstensen. Solution kinetics. In Drug Stability: Principles and Practices. Marcel Dekker, New York, 2000, pp. 25–30.

  20. D. A. Hussar, P. J. Niebergall, E. T. Sugita, and J. T. Doluisio. Aspects of epimerization of certain tetracycline derivatives. J. Pharm. Pharmac. 20:539–546 (1968).

    CAS  Google Scholar 

  21. H. J. C. F. Nelis, and A. P. De Leenheer. Metabolism of minocycline in humans. Drug Metab. Dispos. 10(2):142–146 (1982).

    PubMed  CAS  Google Scholar 

  22. M. J. Nilges, W. S. Enochs, and H. M. Swartz. Identification and characterization of a tetracycline semiquinone formed during the oxidation of minocycline. J. Org. Chem. 56:5623–5630 (1991).

    Article  CAS  Google Scholar 

  23. F. L. Bamba, and J. Wepiere. Role of appendageal pathway in percutaneous absorption of pyridostigmine bromide in various vehicles. Eur. J. Drug Metab. Pharmacokinet. 18:339–348 (1993).

    PubMed  CAS  Google Scholar 

  24. R. Wolf, D. Wolf, B. Tüzün, and Y. Tüzün. Contact dermatitis to cosmetics. Clin. Dermatol. 19:502–515 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. W. Johnson Jr. Final report on the safety assessment of PEG-25 propylene glycol stearate, PEG-75 propylene glycol stearate, PEG-120 propylene glycol stearate, PEG-10 propylene glycol, PEG-8 propylene glycol cocoate, and PEG-55 propylene glycol oleate. Int. J. Toxicol. 20(Suppl. 4):13–26 (2001).

    PubMed  Google Scholar 

  26. M. J. Catanzaro, and J. G. Smith Jr. Propylene glycol dermatitis. J. Am. Acad. Dermatol. 24:90–95 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. M. Lodén, A.-C. Andersson, C. Anderson, I.-M. Bergbrant, T. Frödin, H. Öhman, M.-H. Sandström, T. Särnhult, E. Voog, B. Stenberg, E. Pawlik, A. Preisler-Häggqvist, Svensson, and M. Lindberg. A double-blind study comparing the effect of glycerin and urea on dry, eczematous skin in atopic patients. Acta Derm. Venereol. 82:45–47 (2002).

    Google Scholar 

  28. J. Q. Del Rosso. The role of the vehicle in combination acne therapy. CUTIS. 76(2):15–18 (2005).

    PubMed  Google Scholar 

  29. Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Glycerin (accessed 3/22/07).

  30. J. M. Wessels, W. E. Ford, W. Szymczak, and S. Schneider. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: A Spectroscopic Study. J. Phys. Chem. B. 102:9323–9331 (1998).

    Article  CAS  Google Scholar 

  31. L. Lambs, and G. Berthon. Metal ion-tetracycline interactions in biological fluids. Part 7. Quantitative investigation of methacycline complexes with Ca(II), Mg(II), Cu(II) and Zn(II) ions and assessment of their biological significance. Inorg. Chim. Acta. 151:33–43 (1988).

    Article  CAS  Google Scholar 

  32. M. Novák-Pékli, M. E. Mesbah, G. Pethő. Equilibrium studies on tetracyline-metal ion systems. J. Pharm. Biomed. Anal. 14:1025–1029 (1996).

    Article  PubMed  Google Scholar 

  33. W. B. De Almeida, H. F. Dos Santos, and M. C. Zerner. A theoretical studies of the interaction of anhydrotetracycline with Al(III). J. Pharm. Sci. 87(9):1101–1108 (1998).

    Article  PubMed  Google Scholar 

  34. K. Hasegawa, K. Nakashima, T. Eguchi, and M. Ota. US Patent, 1987, US 4701320.

  35. M. O. Schmitt, and S. Schneider. Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+. Phys. Chem. Comm. 9:1–14 (2000).

    Google Scholar 

  36. Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Ionic_radius (accessed 12/22/06).

  37. WebElements. http://www.webelements.com/webelements/elements/text/Al/radii.html (accessed 12/22/06).

  38. T. Ohyama, and J. A. Cowan. Calorimetric studies of metal binding to tetracycline. Role of solvent structure in defining the selectivity of metal ion-drug interactions. Inorg. Chem. 34:3083–3086 (1995).

    Article  CAS  Google Scholar 

  39. H. A. Duarte, S. Carvalho, E. B. Paniago, and A. M. Simas. Importance of tautomers in the chemical behaviour of tetracyclines. J. Pharm. Sci. 88(1):111–120 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. S. S. Davis. Viscoelastic properties of pharmaceutical semisolids I: Ointment bases. J. Pharm. Sci. 58(4):412–418 (1969).

    Article  PubMed  CAS  Google Scholar 

  41. M. M. Talukdar, I. Vinckier, P. Moldenaers, and R. Kinget. Rheological characterization of xanthan gum and hydroxypropylmethylcellulose with respect to controlled-release drug delivery. J. Pharm. Sci. 85(5):537–540 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. D. S. Jones, A. D. Woolfson, J. Djokic, and W. A. Coulter. Development and mechanical characterization of bioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontal diseases. Pharm. Res. 13(11):1734–1738 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. S. Tamburic, and D. Q. M. Craig. A comparison of different in vitro methods for measuring mucoadhesive performance. Eur. J. Pharm. Biopharm. 44:159–167 (1997).

    Article  CAS  Google Scholar 

  44. I. G. Needleman, G. P. Martin, and F. C. Smales. Characterisation of bioadhesives for periodontal and oral mucosal drug delivery. J. Clin. Periodontol. 25:74–82 (1998).

    Article  PubMed  CAS  Google Scholar 

  45. J. Y. Chang, Y. Oh, H. Choi, Y. B. Kim, and C. Kim. Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. Int. J. Pharm. 241:155–163 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. S. Tamburic, and D. Q. M. Craig. An investigation into the rheological, dielectric and mucoadhesive properties of poly (acrylic acid) gel systems. J. Control. Release 37:59–68 (1995).

    Article  CAS  Google Scholar 

  47. R. K. Gupta. Dynamic mechanical properties. In Polymer and Composite Rheology. Marcel Dekker, New York, 2000, p. 133.

  48. B. W. Barry, and M. C. Meyer. The rheological properties of Carbopol gels I. Continuous shear and creep properties of Carbopol gels. Int. J. Pharm. 2:1–25 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. S. Heng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, K.T., Chan, L.W. & Heng, P.W.S. Formulation of Hydrophilic Non-Aqueous Gel: Drug Stability in Different Solvents and Rheological Behavior of Gel Matrices. Pharm Res 25, 207–217 (2008). https://doi.org/10.1007/s11095-007-9457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9457-3

Key words

Navigation