Skip to main content
Log in

Incorporation of Antitubercular Drug Isoniazid in Pharmaceutically Accepted Microemulsion: Effect on Microstructure and Physical Parameters

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of present study is to formulate microemulsion composed of oleic acid, phosphate buffer, Tween 80, ethanol and to investigate its potential as drug delivery system for an antitubercular drug isoniazid.

Materials and Methods

The pseudo-ternary phase diagram (Gibbs Triangle) was delineated at constant surfactant/co-surfactant ratio (Km 0.55). Changes in the microstructure were established using conductivity (σ), viscosity (η), surface tension (γ) and density measurements. Dissolution studies and particle size analysis were carried out to understand the release of isoniazid from the microemulsion formulation. Further, partitioning studies and spectroscopic analysis (FT-IR and 1H NMR) was performed to evaluate the location of drug in the colloidal formulation.

Results

Physico-chemical analysis of microemulsion system showed the occurrence of structural changes from water-in-oil to oil-in-water microemulsion. It has been observed that the microemulsion remained stable after the incorporation of isoniazid (in terms of optical texture, pH and phase separation). The changes in the microstructure of the microemulsion after incorporation of drug was analyzed on the basis of partition studies of isoniazid in microemulsion components and various parameters viz pH, σ, η,γ. In addition, the particle size analysis indicates that the microemulsion changes into o/w emulsion at infinite dilution. The spectroscopic studies revealed that most of the drug molecules are present in the continuum region of an o/w microemulsion. Dissolution studies infer that a controlled release of drug is expected from o/w emulsion droplet. In the present system the release of isoniazid from microemulsion was found to be non-Fickian.

Conclusion

The present Tween based microemulsion appears beneficial for the delivery of the isoniazid in terms of easy preparation, stability, low cost, sustained and controlled release of a highly water soluble drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. A. Ristsehel. Microemulsions for improved peptide absorption from the gastrointestinal tract. Method find. Exp. Clin. 13:205–220 (1991).

    Google Scholar 

  2. J. M. Sareiaux, L. Acar, and P. A. Sado. Using microemulsion formulations for oral delivery of therapeutic peptides. Int. J. Pharm. 120:127–136 (1995).

    Article  Google Scholar 

  3. P. P. Constantinides. Lipid microemulsion for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res. 12:1561–1572 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. T. R. Kummaro, B. Gurley, M. A. Khan, and I. K. Reddy. Self-emulsifying drug delivery systems (SEMDDS) of co-enzyme Q10: formulation development and bioavailablity assessment. Int. J. Pharm. 212:233–246 (2001).

    Article  Google Scholar 

  5. C. K. Kim, Y. J. Cho, and Z. J. Gao. Preparation and evaluation of biphenyl dimetyl dicarboxylate microemulsons for oral delivery. J. Control. Release 70:149–155 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. K. Kawakami, T. Yoshikawa, T. Hayashi, Y. Nishihara, and K. Masuda. Microemulsion formulation for enhanced absorption of poorly soluble drugs II. In vivo study. J. Control. Release 81:75–82 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. C. W. Pouton. Formulation of self-emulsifying drug delivery systems. Adv. Drug Deliv. Rev. 25:47–58 (1997).

    Article  CAS  Google Scholar 

  8. H. N. Bhargava, A. Narurkar, and I. M. Lieb. Using microemulsion for drug delivery. Pharm. Technology 1:46–54 (1987)

    Google Scholar 

  9. M. Trotta, S. Morel, and M. R. Gasco. Effect of oil phase composition on the skin permeation of felodipine from o/w microemulsion. Pharmazie 52:50–53 (1997).

    PubMed  CAS  Google Scholar 

  10. M. A. Bolzinger, T. C. Carduner, and M. C. Poelman. Bicontinuous sucrose ester microemulsion: a new vehicle for tropical delivery of niflumic acid. Int. J. Pharm. 176:39–45 (1998).

    Article  CAS  Google Scholar 

  11. M. Kreigaard, M. J. Kemme, J. Burggraaf, R. C. Schoemaker, and A. F. Cohen. Influence of microemulsion vehicle on a cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm. Res. 18:593–599 (2001).

    Article  Google Scholar 

  12. M. Kreigaard, E. J. Pederson, and J. W. Jaroszewski. NMR characterization and transdermal drug delivery potential of microemulsion system. J. Control. Release 69:421–433 (2000).

    Article  Google Scholar 

  13. L. Lehmann, S. Keipert, and M. Gloor. Effects of microemulsions on the stratum corneum and hydrocortisone penetration. Eur. J.Pharm. Biopharm. 52:129–136 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. K. Kriwet, and C. C. Muller-Goymann. Diclofenac release from phospholipid drug systems and permeation through excised human stratum corneum. Int. J. Pharm. 125:231–242 (1995).

    Article  CAS  Google Scholar 

  15. M. Trotta. Infleunce of phase transformation on indomethacin release from microemulsions. J. Control. Release 60:399–405 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. M. E. Dalmora, and A. G. Oliveria. Inclusion complex of peroxicam with β-cyclodextrin and incorporation in heaxdecyltrimethyl ammonium bromide based microemulsions. Int. J. Pharm. 184:157–164 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. F. Pattarino, E. Marengo, and M. R. Gasco. Experimental design and partial least square in the study of complex mixtures: microemulsions as drug carriers. Int. J. Pharm. 91:157–165 (1993).

    Article  CAS  Google Scholar 

  18. P. Kumar and K. L. Mital. Handbook of microemulsion: science and technology, Marcel Dekker, New York, 1999.

    Google Scholar 

  19. F. Podlogar, M. Gašperlin, M. Tomšič, A. Jamnik, and M. Bešter-Rogač. Structural characterization of water-Tween 40®–Imwitor 308®–isopropyl myristate using different experimental methods. Int. J. Pharm. 276;115–128 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. A. Lopez, F. Linares, C. Cortell, and M. Herraez. Comparative enhancer effects of Span 20® with Tween 20® and Azone® on the in vitro percutaneous penetration of compounds with different lipophilicities. Int. J. Pharm. 202:133–140 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. J.-Y. Fang, S.-Y. Yu, P.-C. Wu, Y.-B. Huang, and Y.-H. Tsai. In vitro skin permeation of estradiol from various proniosome formulations. Int. J. Pharm. 215:91–99 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. A. H. Kibbe. Handbook of Pharmaceutical Excipients, 3rd ed. Pharmaceutical, London, 2000.

    Google Scholar 

  23. M. J. Lawerence and G. D. Rees. Microemulsion based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 45:89–121 (2000).

    Article  Google Scholar 

  24. J. Kreuter. Nanoparticles. In Colloidal Drug Delivery Systems, Marcel Dekker, New York (1994).

  25. A. T. Florence and D. Attwood. Physicochemical Principles of Pharmacy, 3rd ed. Macmillan, London.

  26. R. Guo, S. Qian, J. Zhu, J. Qian. The release of cephanone in CTAB/n-C5H11OH/H2O system. Colloid. Polym. Sci. 284:468–474 (2006).

    Article  CAS  Google Scholar 

  27. L. C. du Toit, V. Pillay, and M. P. Danckwerts. Tuberculosis chemotherapy: current drug delivery approaches. Resp. Res. 7:118–136 (2006).

    Article  CAS  Google Scholar 

  28. J. L. Lando and H. T. Oakley. Tabulated correction factors for the drop-weight-volume determination of surface and interracial tensions. J. Colloid Interface Sci. 25:526–528 (1967).

    Article  CAS  Google Scholar 

  29. L. K. Pershing, G. E. Parry, and L. D Lambert. Disparity of in vitro and in vivo oleic acid-enhanced β-estradiol percutaneous absorption across human skin. Pharm. Res. 10:1745–1750 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. H. Tanojo, H.E. Junginger, and H.E. Boddé. In vivo human skin permeability enhancement by oleic acid: transepidermal water loss and Fourier-transform infrared spectroscopy studies. J. Control. Release 47:31–39 (1997).

    Article  CAS  Google Scholar 

  31. S. Peltola, P. J. Saarinen-Savolainen, T. M. Suhonen, and A. Urtti. Microemulsions for topical delivery of estradiol. Int. J. Pharm. 254:99–107 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. N. Subramanium, S. Ray, S. K. Ghosal, R. Bhadra, and S. P. Moulik. Formulation design of self-microemulsifying drug delivery systems for improved oral bioavailability of celecoxib. Biol. Pharm. Bull. 27:1993–1999 (2004).

    Article  Google Scholar 

  33. F. F. Lv, L.Q. Zheng, and C.-H. Tung. Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system. Int. J. Pharm. 301:237–246 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. K. V. Schubert and E. W. Kaler. Nonionic microemulsions. Phys. Chem. 100:190–205 (1996).

    Article  CAS  Google Scholar 

  35. R. G. Alany, T. Rades, S. Agatonovic-Kustrin, N. M. Davies, and I. G. Tucker. Effects of alcohols and diols on the phase behavior of quaternary systems. Int. J. Pharm. 196:141–145 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. S. K. Mehta and K. Bala. Tween based microemulsions: a percolation view. Fluid Phase Equilibra 172:197–209 (2000).

    Article  CAS  Google Scholar 

  37. G. S. Grest, I. Webman, and S. A. Safran. Dynamic percolation in microemulsions. Phys. Rev. A 33(4):2842–2845 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. B. Lagourette, J. Peyrelasse, C. Boned, and M. Clausse. Percolative conduction in microemulsion type systems. Nature 281:60–62 (1979).

    Article  Google Scholar 

  39. S. K. Mehta and K. Bala. Volumetric and transport properties in microemulsions and the point of view of percolation theory. Phys. Rev. E. 51:5732–5737 (1995).

    Article  CAS  Google Scholar 

  40. K. E. Bennett, J. C. Hatfield, H. T. Davis, C. W. Macosko, and L. E. Seriven. Viscosity and conductivity of microemulsions. In: Robb, I. D. (ed.), Microemulsions, Plenum, New York, pp 65–84 (1982).

    Google Scholar 

  41. R. K. Mitra and B. K. Paul. Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT + Brij35) and butanol. J. Colloid Inter. Sci. 283:565–577 (2005)

    Article  CAS  Google Scholar 

  42. M. E. Leser, W. C. Evert, and W. G. M. Agterof. Phase behaviourof lecithin–water–alcohol–triacylglycerol mixtures. Colloids Surf. A., 116:293–308 (1996).

    Article  CAS  Google Scholar 

  43. F. Aliotta, P. Migliardo, D. I. Donato, V. Turco Liveri, E. Bardez, and B. Larry. Local hydration effects in reversed micellar aggregation. Progr. Colloid Polym. Sci. 89:258–262 (1992).

    Article  CAS  Google Scholar 

  44. V. Arcoleo, M. Goffredi, V. Turco Liveri. Physicochemical characterization of copper (II) bis(2-ethylhexyl) sulfosuccinate reversed micelles. J. Colloid Int. Sci. 198:216–223 (1998).

    Article  CAS  Google Scholar 

  45. H. M. El-Laithy. Preparation and physicochemical characterization of dioctyl sodium dulfosuccinate (Aersol OT) microemulsion for oral drug delivery. AAPS PharmSciTech 4(Article 11):1–10 (2003).

    Google Scholar 

  46. H. Dai, Q. Chen, H. Qin, Y. Guan, D. Shen, Y. Hua,Y. Tang, and J. Xu. A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39:6584–6589 (2006)

    Article  CAS  Google Scholar 

  47. N. Wakiyama, K. Juni, and M. Nakano. Preparation and evaluation in vitro of polylactic acid microspheres containing local anesthetics. Chem. Pharm. Bull. 29:3363–3368 (1981).

    PubMed  CAS  Google Scholar 

  48. L. Zhang, X. Sun, and Z.-R. Zhang. An investigation on liver-targeting microemulsions of norcantharidin. Drug Deliv. 12:289–295 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. C. Washington. Drug release from microdisperse systems: a critical review. Int. J. Pharm. 58:1–12 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.K.M. is thankful to UGC and DST India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mehta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11095_2007_9355_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, S.K., Kaur, G. & Bhasin, K.K. Incorporation of Antitubercular Drug Isoniazid in Pharmaceutically Accepted Microemulsion: Effect on Microstructure and Physical Parameters. Pharm Res 25, 227–236 (2008). https://doi.org/10.1007/s11095-007-9355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9355-8

Key words

Navigation