Skip to main content

Advertisement

Log in

Preparation and Evaluation of Gene-transfected Cultured Skin as a Novel Drug Delivery System for Severely Burned Skin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to prepare and evaluate gene-transfected cultured skin to establish a dermal patch consisting of cultured skin as a new and novel delivery system for severely burned skin.

Materials and Methods

Plasmid DNA encoding the green fluorescent protein (GFP) gene was used as a model gene and transfected to rat and human cultured dermis models (CDMs) using the hemagglutinating virus of Japan envelope vector (HVJ-E) to prepare gene-transfected CDM and evaluate GFP expression in the CDM. Two kinds of transfection methods were evaluated. In pre-transfection, the gene was first transfected into fibroblasts and then CDM was prepared using these gene-transfected cells. In post-transfection, the gene was transfected directly into CDM.

Results

GFP expression was observed in both the pre- and post-transfected CDMs. The post-transfection method showed higher GFP expression in the CDM than pre-transfection, although no statistically significant difference was observed. The cell viability of these transfected CDMs was also examined with MTT assay. Slight decrease in viability was observed in these transfected CDMs. These methods could be useful in preparing gene-transfected cultured skins with low cell damage.

Conclusion

Gene transfection to cultured skin may produce several dermal patches that release potent endogenous bioactive peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Orive, R. M. Hernandez, A. Rodriguez Gascon, A. Dominguez-Gil, and J. L. Pedraz. Drug delivery in biotechnology: present and future. Curr. Opin. Biotechnol. 14:659–664 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Y. Tabata. Present position and future expectations of regenerative medicine. Biotherapy 18:91–105 (2004).

    CAS  Google Scholar 

  3. N. E. O’Connor, J. G. Muliken, S. Banks-Schlegel, O. Kehinde, and H. Green. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1:75–78 (1981).

    Article  Google Scholar 

  4. G. G. Gallico, N. E. O’Connor, C. C. Compton, O. Kehinde, and H. Green. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med. 311:448–451 (1984).

    Article  PubMed  Google Scholar 

  5. H. Carsin, P. Ainaud, H. Le Bever, J. Rives, A. Lakhel, J. Stephanazzi, F. Lambert, and J. Perrot. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 26:379–387 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. Y. M. Bello, A. F. Falabella, and W. H. Eaglstein. Tissue-engineered skin. Current status in wound healing. Am. J. Clin. Dermatol. 2:305–313 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. R. G. Teepe, R. W. Kreis, E. J. Koebrugge, J. A. Kempenaar, A. F. Vloemans, R. P. Hermans, H. Boxma, J. Dokter, J. Hermans, and M. Ponec. The use of cultured autologous epidermis in the treatment of extensive burn wounds. J. Trauma 30:269–275 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. K. Kawai, S. Suzuki, Y. Tabata, T. Taira, Y. Ikada, and Y. Nishimura. Development of an artificial dermis preparation capable of silver sulfadiazine release. J. Biomed. Mater. Res. 57:346–356 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. Y. Kuroyanagi, E. Kim, and N. Shioya. Evaluation of a synthetic wound dressing capable of releasing silver sulfadiazine. J. Burn Care Rehabil. 12:106–115 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. K. Matsuda, S. Suzuki, N. Isshiki, K. Yoshioka, R. Wada, S. H. Hyon, and Y. Ikada. Evaluation of a bilayer artificial skin capable of sustained release of an antibiotic. Biomaterials 13:119–122 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. Y. S. Cho, J. W. Lee, J. S. Lee, J. H. Lee, T. R. Yoon, Y. Kuroyanagi, M. H. Park, and H. J. Kim. Hyaluronic acid and silver sulfadiazine-impregnated polyurethane foams for wound dressing application. J. Mat. Sci. Mat. Med. 13:861–865 (2002).

    Article  CAS  Google Scholar 

  12. N. Hada, T. Hasegawa, H. Takahashi, T. Ishibashi, and K. Sugibayashi. Cultured skin loaded with tetracycline HCl and chloramphenicol as dermal delivery system: mathematical evaluation of the cultured skin containing antibiotics. J. Control Release 108:341–350 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. J. Harder, J. Bartels, E. Christophers, and J. M. Schroder. A peptide antibiotic from human skin. Nature 387:861 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. T. Hiratsuka, M. Nakazato, Y. Date, J. Ashitani, T. Minematsu, N. Chino, and S. Matsukura. Identification of human beta-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem. Biophys. Res. Commun. 249:943–947 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. A. Y. Liu, D. Destoumieux, A. V. Wong, C. H. Park, E. V. Valore, L. Liu, and T. Ganz. Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J. Invest. Dermatol. 118:275–281 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. Y. Kaneda, T. Nakajima, T. Nishikawa, S. Yamamoto, H. Ikegami, N. Suzuki, H. Nakamura, R. Morishita, and H. Kotani. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol. Ther. 6:219–226 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Y. Kaneda. New vector innovation for drug delivery: development of fusigenic non-viral particles. Curr. Drug Targets 4:599–602 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. E. Bell, B. Ivarsson, and C. Merrill. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. U.S.A. 76:1274–1278 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. C. L. Cannon, P. J. Neal, J. A. Southee, J. Kubilus, and M. Klausner. New epidermal model for dermal irritancy testing. Toxicol. In Vitro 8:889–891 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. M. Ono, Y. Sawa, Y. Miyamoto, N. Fukushima, H. Ichikawa, T. Ishizaka, Y. Kaneda, and H. Matsuda. The effect of gene transfer with hepatocyte growth factor for pulmonary vascular hypoplasia in neonatal porcine model. J. Thorac. Cardiovasc. Surg. 129:740–745 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. Y. D. Kim, K. G. Park, R. Morishita, Y. Kaneda, S. Y. Kim, D. K. Song, H. S. Kim, C. W. Nam, H. C. Lee, K. U. Lee, J. Y. Park, B. W. Kim, J. G. Kim, and I. K. Lee. Liver-directed gene therapy of diabetic rats using an HVJ-E vector containing EBV plasmids expressing insulin and GLUT 2 transporter. Gene Ther. 13:216–224 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. S. A. Eming, J. Lee, R. G. Snow, R. G. Tompkins, M. L. Yarmush, and J. R. Morgan. Genetically modified human epidermis overexpressing PDGF-A directs the development of a cellular and vascular connective tissue stroma when transplanted to athymic mice-implications for the use of genetically modified keratinocytes to modulate dermal regeneration. J. Invest. Dermatol. 105:756–763 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. K. W. Liechty, M. Nesbit, M. Herlyn, A. Radu, N. S. Adzick, and T. M. Crombleholme. Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. J. Invest. Dermatol. 113:375–383 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. Y. Kaneda, S. Yamamoto, and T. Nakajima. Development of HVJ envelope vector and its application to gene therapy. Adv. Genet. 53:307–332 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. D. M. Supp, S. M. Bell, J. R. Morgan, and S. T. Boyce. Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet-derived growth factor-A. Wound Repair Regen. 8:26–35 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sugibayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hada, N., Todo, H., Komada, F. et al. Preparation and Evaluation of Gene-transfected Cultured Skin as a Novel Drug Delivery System for Severely Burned Skin. Pharm Res 24, 1473–1479 (2007). https://doi.org/10.1007/s11095-007-9265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9265-9

Key words

Navigation