Skip to main content

Burn Reconstruction: Skin Substitutes and Tissue Engineering

  • Chapter
  • First Online:
Handbook of Burns Volume 2

Abstract

Skin, also known as the integument, is not only the largest laminar organ but also the appropriate interface between the human organism and its environment. Besides other functions, the skin represents the primary barrier of the immune system. Thus, an extensive skin loss due to thermal trauma represents in the majority of cases a life-threatening situation and demands particular requirements from the plastic and burn surgery to provide a sufficient skin substitution. Development and improvement of innovative strategies concerning skin expansion and tissue engineering have contributed to the fact that burns affecting more than 80% of the body surface (TBS) are survivable today [1]. Although the application of cultured epidermis and compound cultured skin analogues is approved as a life-saving method today, the indications for this novel approach have become more differentiated. Besides historical aspects, the present chapter gives insights into both the conventional techniques and the application forms of current cultured skin substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sample references. In case of doubt, kindly consult Springer to obtain detailed guidelines for accurate reference entries for particular subject fields.

References

Sample references. In case of doubt, kindly consult Springer to obtain detailed guidelines for accurate reference entries for particular subject fields.

  1. Horch RE, Corbei O, Formanek-Corbei B, Brand-Saberi B, Vanscheidt W, Stark G. Reconstitution of basement membrane after ‘sandwich-technique’ skin grafting for severe burns demonstrated by immunohistochemistry. J Burn Care Rehabil. 1998;19:189–202.

    Article  CAS  PubMed  Google Scholar 

  2. Bünger C. Gelungener Versuch einer Nasenbildung aus einem völlig getrennten Hautstück aus dem Beine. J Chir Augenheilkd. 1823;4:569–73.

    Google Scholar 

  3. Reverdin JL. Greffe epidermique. Bull Soc Imperial Chirurg Paris. 1869;10:511–4.

    Google Scholar 

  4. Mangoldt F. Die Epithelsaat zum Verschluß einer großen Wundfläche. Med Wochenschr. 1895;21:798–803.

    Article  Google Scholar 

  5. Braun W. Zur Technik der Hautpfropfung. Zentralb Chir. 1920;47:1355–61.

    Google Scholar 

  6. Horch RE, Stark G, Spilker G. Treatment of perianal burns with submerged skin particles. Zentralbl Chir. 1994;119:722–5.

    CAS  PubMed  Google Scholar 

  7. Ollier L. Sur le greffes cutanees ou autoplatiques. Bull Acad Med. 1872;1:243–56.

    Google Scholar 

  8. Thiersch C. Ueber die feineren anatomischen Veränderungen bei Aufheilung von Haut auf Granulationen. Langenbecks Arch Klin Chir. 1874;17:318–24.

    Google Scholar 

  9. Mir Y, Mir L. The gauze technique in skin grafting; a quick method in applying dermatome grafts. Plast Reconstr Surg. 1950;5(1):91–6.

    Article  Google Scholar 

  10. Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J Trauma. 1970;10(12):1103–8.

    Article  CAS  PubMed  Google Scholar 

  11. Fisher JC. Skin—the ultimate solution for the burn wound. N Engl J Med. 1984;311(7):466–7.

    Article  CAS  PubMed  Google Scholar 

  12. Alexander JW, MacMillan BG, Law E, Kittur DS. Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay. J Trauma. 1981;21(6):433–8.

    CAS  PubMed  Google Scholar 

  13. Pallua N, Machens HG, Becker M, Berger A. Surgical prevention of post-traumatic infection by immediate necrectomy of burn wounds. Langenbecks Arch Chir Suppl Kongressbd. 1996;113:1144–8.

    CAS  PubMed  Google Scholar 

  14. Gabarro P. A new method of grafting. Brit Med J. 1943;1:723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mac Millan B, Altemeier W. Massive excision of the extensive burn. Research in burns. Am Inst Biol Siences. 1962;9:331.

    Google Scholar 

  16. Ong YS, Samuel M, Song C. Metaanalysis of early excision of burns. Burns. 2006;32:145–50.

    Article  PubMed  Google Scholar 

  17. Tanner JC Jr, Vandeput J, Olley JF. The mesh skin graft. Plast Reconstr Surg. 1964;34:287–92.

    Article  PubMed  Google Scholar 

  18. Tanner JC Jr, Shea PC Jr, Bradley WH, Vandeput JJ. Large-mesh skin grafts. Plast Reconstr Surg. 1969;44(5):504–6.

    Article  PubMed  Google Scholar 

  19. Burleson R, Eiseman B. Nature of the bond between partial-thickness skin and wound granulations. Surgery. 1972;72(2):315–22.

    CAS  PubMed  Google Scholar 

  20. Adams DC, Ramsey ML. Grafts in dermatologic surgery: review and update on full- and split-thickness skin grafts, free cartilage grafts, and composite grafts. Dermatol Surg. 2005;31(8 Pt 2):1055–67.

    CAS  PubMed  Google Scholar 

  21. Brou J, Vu T, McCauley RL, Herndon DN, Desai MH, Rutan RL, et al. The scalp as a donor site: revisited. J Trauma. 1990;30(5):579–81.

    Article  CAS  PubMed  Google Scholar 

  22. Corps BV. The effect of graft thickness, donor site and graft bed on graft shrinkage in the hooded rat. Br J Plast Surg. 1969;22(2):125–33.

    Article  CAS  PubMed  Google Scholar 

  23. Smahel J, Ganzoni N. The take of mesh graft in experiment. Acta Chir Plast. 1972;14(2):90–100.

    CAS  PubMed  Google Scholar 

  24. Meek CP. Successful microdermagrafting using the Meek-Wall microdermatome. Am J Surg. 1958;96(4):557–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kreis RW, Mackie DP, Vloemans AW, Hermans RP, Hoekstra MJ. Widely expanded postage stamp skin grafts using a modified Meek technique in combination with an allograft overlay. Burns. 1993;19(2):142–5.

    Article  CAS  PubMed  Google Scholar 

  26. Vandeput J, Tanner JC Jr, Carlisle JD. The ultra postage stamp skin graft. Plast Reconstr Surg. 1966;38(3):252–4.

    Article  CAS  PubMed  Google Scholar 

  27. Chang LY, Yang JY. Clinical experience of postage stamp autograft with porcine skin onlay dressing in extensive burns. Burns. 1998;24(3):264–9.

    Article  CAS  PubMed  Google Scholar 

  28. Bondoc CC, Burke JF. Clinical experience with viable frozen human skin and a frozen skin bank. Ann Surg. 1971;174(3):371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kreis RW, Hoekstra MJ, Mackie DP, Vloemans AF, Hermans RP. Historical appraisal of the use of skin allografts in the treatment of extensive full skin thickness burns at the Red Cross Hospital Burns Centre, Beverwijk, The Netherlands. Burns. 1992;18(Suppl 2):S19–22.

    Article  PubMed  Google Scholar 

  30. Abbott WM, Hembree JS. Absence of antigenicity in freeze-dried skin allografts. Cryobiology. 1970;6(5):416–8.

    Article  CAS  PubMed  Google Scholar 

  31. Hermans RP. The use of human allografts in the treatment of scalds in children. Panminerva Med. 1983;25(3):155–6.

    CAS  PubMed  Google Scholar 

  32. Kreis RW, Vloemans AF, Hoekstra MJ, Mackie DP, Hermans RP. The use of non-viable glycerol-preserved cadaver skin combined with widely expanded autografts in the treatment of extensive third-degree burns. J Trauma. 1989;29(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  33. Horch RE, Jeschke MG, Spilker G, Herndon DN, Kopp J. Treatment of second degree facial burns with allografts—preliminary results. Burns. 2005;31(5):597–602.

    Article  PubMed  Google Scholar 

  34. Achauer BM, Hewitt CW, Black KS, Martinez SE, Waxman KS, Ott RA, et al. Long-term skin allograft survival after short-term cyclosporin treatment in a patient with massive burns. Lancet. 1986;1(8471):14–5.

    Article  CAS  PubMed  Google Scholar 

  35. Takiuchi I, Higuchi D, Sei Y, Nakajima T. Histological identification of prolonged survival of a skin allograft on an extensively burned patient. Burns Incl Therm Inj. 1982;8(3):164–7.

    Article  CAS  PubMed  Google Scholar 

  36. Alsbjörn B, SÝrensen B. Grafting with epidermal Langerhans cell depressed cadaver split skin. Burns. 1985;11:259.

    Article  Google Scholar 

  37. Burke JF, May JW Jr, Albright N, Quinby WC, Russell PS. Temporary skin transplantation and immunosuppression for extensive burns. N Engl J Med. 1974;290(5):269–71.

    Article  CAS  PubMed  Google Scholar 

  38. Burke JF, Quinby WC, Bondoc CC, Cosimi AB, Russell PS, Szyfelbein SK. Immunosuppression and temporary skin transplantation in the treatment of massive third degree burns. Ann Surg. 1975;182(3):183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hewitt CW, Black KS, Stenger JA, Go C, Achauer BM, Martin DC. Comparison of kidney, composite tissue, and skin allograft survival in rats prolonged by donor blood and concomitant limited cyclosporine. Transplant Proc. 1988;20(3 Suppl 3):1110–3.

    CAS  PubMed  Google Scholar 

  40. Hewitt CW, Black KS, Harman JC, Beko KR, Lee HS, Patel AP, et al. Partial tolerance in rat renal allograft recipients following multiple blood transfusions and concomitant cyclosporine. Transplantation. 1990;49(1):194–8.

    Article  CAS  PubMed  Google Scholar 

  41. Frame JD, Sanders R, Goodacre TE, Morgan BD. The fate of meshed allograft skin in burned patients using cyclosporin immunosuppression. Br J Plast Surg. 1989;42(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  42. Kanitakis J, Ramirez-Bosca A, Haftek M, Thivolet J. Histological and ultrastructural effects of cyclosporin A on normal human skin xenografted on to nude mice. Virchows Arch A Pathol Anat Histopathol. 1990;416(6):505–11.

    Article  CAS  PubMed  Google Scholar 

  43. Bromberg BE, Song IC, Mohn MP. The use of pig skin as a temporary biological dressing. Plast Reconstr Surg. 1965;36:80–90.

    Article  CAS  PubMed  Google Scholar 

  44. Ding YL, Pu SS, Wu DZ, Ma C, Pan ZL, Lu X, et al. Clinical and histological observations on the application of intermingled auto- and porcine-skin heterografts in third degree burns. Burns Incl Therm Inj. 1983;9(6):381–6.

    Article  CAS  PubMed  Google Scholar 

  45. Min J, Yang GF. Clinical and histological observations on intermingled pig skin and auto-skin transplantation in burns (author’s transl). Zhonghua Wai Ke Za Zhi. 1981;19(1):43–5.

    CAS  PubMed  Google Scholar 

  46. Yang ZJ. Treatment of extensive third degree burns. A Chinese concept. Rev Med Chir Soc Med Nat Iasi. 1981;85(1):69–74.

    CAS  PubMed  Google Scholar 

  47. Baumer F, Henrich HA, Bonfig R, Kossen DJ, Romen W. Surgical treatment of 3d degree burns with mixed homologous/autologous and heterologous/autologous full-thickness skin grafts. Comparison of results with native and frozen homologous and heterologous tissues in animal experiments. Zentralbl Chir. 1986;111(7):426–30.

    CAS  PubMed  Google Scholar 

  48. Jackson D. A clinical study of the use of skin homografts for burns. Br J Plast Surg. 1954;7(1):26–43.

    Article  CAS  PubMed  Google Scholar 

  49. Converse JM, Rapaport FT. The vascularization of skin autografts and homografts; an experimental study in man. Ann Surg. 1956;143(3):306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toranto IR, Sayler KE, Myers MB. Vascularization of porcine skin heterografts. Plast Reconstr Surg. 1974;54(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  51. Phillips A, Clarke J. The use of intermingled autograft and parental allograft skin in the treatment of major burns in children. Br J Plast Surg. 1991;44:608.

    Article  Google Scholar 

  52. Herndon DN, Rutan RL. Comparison of cultured epidermal autograft and massive excision with serial autografting plus homograft overlay. J Burn Care Rehabil. 1992;13(1):154–7.

    Article  CAS  PubMed  Google Scholar 

  53. Horch R, Stark GB, Kopp J, Spilker G. Cologne Burn Centre experiences with glycerol-preserved allogeneic skin: Part I: clinical experiences and histological findings (overgraft and sandwich technique). Burns. 1994;20(Suppl 1):S23–6.

    Article  PubMed  Google Scholar 

  54. Zhang ML, Chang ZD, Han X, Zhu M. Microskin grafting. I. Animal experiments. Burns Incl Therm Inj. 1986;12(8):540–3.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang ML, Wang CY, Chang ZD, Cao DX, Han X. Microskin grafting. II. Clinical report. Burns Incl Therm Inj. 1986;12(8):544–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lin SD, Lai CS, Chou CK, Tsai CW. Microskin grafting of rabbit skin wounds with biobrane overlay. Burns. 1992;18(5):390–4.

    Article  CAS  PubMed  Google Scholar 

  57. Lin SD, Lai CS, Chou CK, Tsai CW, Wu KF, Chang CW. Microskin autograft with pigskin xenograft overlay: a preliminary report of studies on patients. Burns. 1992;18(4):321–5.

    Article  CAS  PubMed  Google Scholar 

  58. Sawada Y. Survival of an extensively burned child following use of fragments of autograft skin overlain with meshed allograft skin. Burns Incl Therm Inj. 1985;11(6):429–33.

    Article  CAS  PubMed  Google Scholar 

  59. Sawada Y. Buried chip skin grafting for treatment of perianal burns. Burns Incl Therm Inj. 1989;15(1):36–8.

    Article  CAS  PubMed  Google Scholar 

  60. Ming-Liang Z, Chang-Yeh W, Zhi-De C. Microskin grafting II. Clinical report. Burns. 1986;12:544.

    Article  Google Scholar 

  61. Achauer BM, editor. Burn reconstruction. New York, NY: Thieme Medical Publishers; 1991.

    Google Scholar 

  62. Buehrer G, Arkudas A, Horch RE. Treatment of standardised wounds with pure epidermal micrografts generated with an automated device. Int Wound J. 2017;

    Google Scholar 

  63. Buhrer G, Beier JP, Horch RE, et al. Surgical treatment of burns: special aspects of pediatric burns. Hautarzt. 2017;68(5):385–92.

    Article  CAS  PubMed  Google Scholar 

  64. Weigand A, Boos AM, Tasbihi K, et al. Selective isolation and characterization of primary cells from normal breast and tumors reveal plasticity of adipose derived stem cells. Breast Cancer Res. 2016;18(1):32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Witt R, Weigand A, Boos AM, et al. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 2017;18:1–15.

    Article  CAS  Google Scholar 

  66. Hafemann B, Frese C, Kistler D, Hettich R. Intermingled skin grafts with in vitro cultured keratinocytes—experiments with rats. Burns. 1989;15(4):233–8.

    Article  CAS  PubMed  Google Scholar 

  67. Wheeler CE, Canby CM, Cawley EP. Long-term tissue culture of epithelial-like cells from human skin. J Invest Dermatol. 1957;29(5):383–91; discussion 91–2.

    Article  CAS  PubMed  Google Scholar 

  68. O’Conner N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1:75–8.

    Article  Google Scholar 

  69. Hefton JM, Madden MR, Finkelstein JL, Shires GT. Grafting of burn patients with allografts of cultured epidermal cells. Lancet. 1983;2(8347):428–30.

    Article  CAS  PubMed  Google Scholar 

  70. Gallico GG III, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984;311(7):448–51.

    Article  PubMed  Google Scholar 

  71. Madden MR, Finkelstein JL, Staiano-Coico L, Goodwin CW, Shires GT, Nolan EE, et al. Grafting of cultured allogeneic epidermis on second- and third-degree burn wounds on 26 patients. J Trauma. 1986;26(11):955–62.

    Article  CAS  PubMed  Google Scholar 

  72. Eldad A, Burt A, Clarke JA, Gusterson B. Cultured epithelium as a skin substitute. Burns Incl Therm Inj. 1987;13(3):173–80.

    Article  CAS  PubMed  Google Scholar 

  73. Teepe RG, Kreis RW, Hoekstra MJ, Ponec M. Permanent wound cover using cultured autologous epidermis transplants: a new treatment method for patients with severe burns. Ned Tijdschr Geneeskd. 1987;131(22):946–51.

    CAS  PubMed  Google Scholar 

  74. Aubock J. Skin replacement with cultured keratinocytes. Z Hautkr. 1988;63(7):565–7.

    CAS  PubMed  Google Scholar 

  75. Aubock J, Irschick E, Romani N, Kompatscher P, Hopfl R, Herold M, et al. Rejection, after a slightly prolonged survival time, of Langerhans cell-free allogeneic cultured epidermis used for wound coverage in humans. Transplantation. 1988;45(4):730–7.

    Article  CAS  PubMed  Google Scholar 

  76. Von der Ljunggren C. Fähigkeit des Hautepithels ausserhalb des Organismus sein Leben zu behalten, mit Berücksichtigung der Transplantation. Dtsch Chir. 1898;47:608–15.

    Article  Google Scholar 

  77. Carrel A, Burrows M. Cultivation of adult tissues and organs outside of the body. JAMA. 1910;55:1379–81.

    Article  Google Scholar 

  78. Hadda S. Aus der chirurg. Abteilung des israelitischen Krankenhauses zu Breslau: Die Kultur lebender Körperzellen. Berl Klin Wschr. 1912;49:11.

    Google Scholar 

  79. Kreibich K. Aus der deutschen dermatologischen Klinik in Prag: Kultur erwachsener Haut auf festem Nährboden. Arch Dermatol Syph. 1914;120:168–76.

    Article  CAS  Google Scholar 

  80. Waymouth C. Construction and use of synthetic media. In: Willmer E, editor. Cells and tissues in culture. London: Academic; 1965. p. 99.

    Chapter  Google Scholar 

  81. Börnstein K. Über Gewebezüchtung menschlicher Haut. Klin Wschr. 1930;9:1119.

    Article  Google Scholar 

  82. Pinkus H. Über Gewebekulturen menschlicher Epidermis. Arch Dermatol Syph. 1932;165:53–85.

    Article  Google Scholar 

  83. Medawar P. The cultivation of adult mammalian skin epithelium in vitro. Q J Microsc Sci. 1948;89:187.

    CAS  PubMed  Google Scholar 

  84. Parshley MS, Simms HS. Cultivation of adult skin epithelial cells (chicken and human) in vitro. Am J Anat. 1950;86(2):163–89.

    Article  CAS  PubMed  Google Scholar 

  85. Lewis S, Pomerat C, Ezell D. Human epidermal cell observed in tissue culture phase-contrast microscope. Anat Rec. 1949;104:487.

    Article  CAS  PubMed  Google Scholar 

  86. Flaxman B, Harper R. Primary cell culture for biochemical studies of human keratinocytes. Br J Dermatol. 1975;92:305.

    Article  CAS  PubMed  Google Scholar 

  87. Flaxman BA, Harper RA. Primary cell culture for biochemical studies of human keratinocytes. A method for production of very large numbers of cells without the necessity of subculturing techniques. Br J Dermatol. 1975;92(3):305–9.

    Article  CAS  PubMed  Google Scholar 

  88. Blocker TG Jr, Pomerat CM, Lewis SR. Research opportunities with the use of cultures of living skin. Plast Reconstr Surg. 1950;5(4):283–8.

    Article  Google Scholar 

  89. Bassett CA, Evans VJ, Earle WR. Characteristics and potentials of long term cultures of human skin. Plast Reconstr Surg. 1956;17(6):421–9.

    Article  CAS  Google Scholar 

  90. Medawar P. Tests by tissue culture methods on the nature and immunity to transplanted skin. Q J Microsc Sci. 1948;89:239.

    CAS  PubMed  Google Scholar 

  91. Moscona A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res. 1961;22:455–75.

    Article  CAS  PubMed  Google Scholar 

  92. Karasek MA. Growth and differentiation of transplanted epithelial cell cultures. J Invest Dermatol. 1968;51(4):247–52.

    Article  CAS  PubMed  Google Scholar 

  93. Igel HJ, Freeman AE, Boeckman CR, Kleinfeld KL. A new method for covering large surface area wounds with autografts. II. Surgical application of tissue culture expanded rabbit-skin autografts. Arch Surg. 1974;108(5):724–9.

    Article  CAS  PubMed  Google Scholar 

  94. Freeman AE, Igel HJ, Herrman BJ, Kleinfeld KL. Growth and characterization of human skin epithelial cell cultures. In Vitro. 1976;12(5):352–62.

    Article  CAS  PubMed  Google Scholar 

  95. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.

    Article  CAS  PubMed  Google Scholar 

  96. Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 1975;6(3):317–30.

    Article  CAS  PubMed  Google Scholar 

  97. Medawar P. Sheets of pure epidermal epithelium from human skin. Nature. 1941;148:783.

    Article  Google Scholar 

  98. Billingham RE, Reynolds J. Transplantation studies on sheets of pure epidermal epithelium and on epidermal cell suspensions. Br J Plast Surg. 1952;5(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  99. Cruickshank CN, Cooper JR, Hooper C. The cultivation of cells from adult epidermis. J Invest Dermatol. 1960;34:339–42.

    Article  CAS  PubMed  Google Scholar 

  100. Prunieras M, Mathivon MF, Leung TK, Gazzolo L. Euploid culture of adult epidermal cells in monocellular layers. Ann Inst Pasteur (Paris). 1965;108:149–65.

    CAS  Google Scholar 

  101. Constable H, Cooper JR, Cruickshank CN, Mann PR. Keratinization in dispersed cell cultures of adult guinea-pig ear skin. Br J Dermatol. 1974;91(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  102. Karasek MA, Charlton ME. Growth of postembryonic skin epithelial cells on collagen gels. J Invest Dermatol. 1971;56(3):205–10.

    Article  CAS  PubMed  Google Scholar 

  103. Cohen S. The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol. 1965;12(3):394–407.

    Article  CAS  PubMed  Google Scholar 

  104. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 1979;76(11):5665–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet. 1986;1(8490):1123–4.

    Article  CAS  PubMed  Google Scholar 

  106. Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980;19(1):245–54.

    Article  CAS  PubMed  Google Scholar 

  107. Yuspa SH, Koehler B, Kulesz-Martin M, Hennings H. Clonal growth of mouse epidermal cells in medium with reduced calcium concentration. J Invest Dermatol. 1981;76(2):144–6.

    Article  CAS  PubMed  Google Scholar 

  108. Barnes D, Sato G. Methods for growth of cultured cells in serum-free medium. Anal Biochem. 1980;102(2):255–70.

    Article  CAS  PubMed  Google Scholar 

  109. Shipley GD, Ham RG. Improved medium and culture conditions for clonal growth with minimal serum protein and for enhanced serum-free survival of Swiss 3T3 cells. In Vitro. 1981;17(8):656–70.

    Article  CAS  PubMed  Google Scholar 

  110. Tsao MC, Walthall BJ, Ham RG. Clonal growth of normal human epidermal keratinocytes in a defined medium. J Cell Physiol. 1982;110(2):219–29.

    Article  CAS  PubMed  Google Scholar 

  111. Wille JJ Jr, Pittelkow MR, Shipley GD, Scott RE. Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics, and cell cycle studies. J Cell Physiol. 1984;121(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  112. Kopp J, Jeschke MG, Bach AD, Kneser U, Horch RE. Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous keratinocytes in a natural fibrin matrix. Cell Tissue Bank. 2004;5(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  113. Yasushi F, Koichi U, Yuka O, Kentaro K, Hiromichi M, Yoshimitsu K. Treatment with autologous cultured dermal substitutes (CDS) for burn scar contracture in children. Wound Repair Regen. 2004;12:A11.

    Article  Google Scholar 

  114. Freising C, Horch R. Clinical results of cultivated keratinocyzes to treat burn injuries – a metaanalysis. In: Achauer B, editor. Cultured human keratinocytes and tissue engineered skin substitutes. Stuttgart: Thieme; 2001. p. 220–6.

    Google Scholar 

  115. Woodley DT, Peterson HD, Herzog SR, Stricklin GP, Burgeson RE, Briggaman RA, et al. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA. 1988;259(17):2566–71.

    Article  CAS  PubMed  Google Scholar 

  116. Munster AM, Smith-Meek M, Shalom A. Acellular allograft dermal matrix: immediate or delayed epidermal coverage? Burns. 2001;27(2):150–3.

    Article  CAS  PubMed  Google Scholar 

  117. Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation. 2000;70(11):1588–98.

    Article  CAS  PubMed  Google Scholar 

  118. Hunyadi J, Farkas B, Bertenyi C, Olah J, Dobozy A. Keratinocyte grafting: covering of skin defects by separated autologous keratinocytes in a fibrin net. J Invest Dermatol. 1987;89(1):119–20.

    Article  CAS  PubMed  Google Scholar 

  119. Altmeppen J, Hansen E, Bonnlander GL, Horch RE, Jeschke MG. Composition and characteristics of an autologous thrombocyte gel. J Surg Res. 2004;117(2):202–7.

    Article  CAS  PubMed  Google Scholar 

  120. Perry VP, Evans VJ, Earle WR, Hyatt GW, Bedell WC. Long-term tissue culture of human skin. Am J Hyg. 1956;63(1):52–8.

    CAS  PubMed  Google Scholar 

  121. Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8(1):013001.

    Article  PubMed  CAS  Google Scholar 

  122. Malda J, Groll J. A step towards clinical translation of biofabrication. Trends Biotechnol. 2016;34(5):356–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymund E. Horch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horch, R.E., Schmidt, V.J., Arkudas, A. (2020). Burn Reconstruction: Skin Substitutes and Tissue Engineering. In: Kamolz, LP., Jeschke, M.G., Horch, R.E., Küntscher, M., Brychta, P. (eds) Handbook of Burns Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-34511-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34511-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34510-5

  • Online ISBN: 978-3-030-34511-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics