Skip to main content

Advertisement

Log in

Molecular Factor Computing for Predictive Spectroscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The concept of molecular factor computing (MFC)-based predictive spectroscopy was demonstrated here with quantitative analysis of ethanol-in-water mixtures in a MFC-based prototype instrument.

Methods

Molecular computing of vectors for transformation matrices enabled spectra to be represented in a desired coordinate system. New coordinate systems were selected to reduce the dimensionality of the spectral hyperspace and simplify the mechanical/electrical/computational construction of a new MFC spectrometer employing transmission MFC filters. A library search algorithm was developed to calculate the chemical constituents of the MFC filters. The prototype instrument was used to collect data from 39 ethanol-in-water mixtures (range 0–14%). For each sample, four different voltage outputs from the detector (forming two factor scores) were measured by using four different MFC filters. Twenty samples were used to calibrate the instrument and build a multivariate linear regression prediction model, and the remaining samples were used to validate the predictive ability of the model.

Results

In engineering simulations, four MFC filters gave an adequate calibration model (r2 = 0.995, RMSEC = 0.229%, RMSECV = 0.339%, p = 0.05 by f test). This result is slightly better than a corresponding PCR calibration model based on corrected transmission spectra (r2 = 0.993, RMSEC = 0.359%, RMSECV = 0.551%, p = 0.05 by f test). The first actual MFC prototype gave an RMSECV = 0.735%.

Conclusion

MFC was a viable alternative to conventional spectrometry with the potential to be more simply implemented and more rapid and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. J. Dempsey, D. G. Davis, R. G. Buice, and R. A. Lodder. Biological and medical applications of near-infrared spectroscopy. Appl. Spectrosc. 50:18A–34A (1996).

    Article  CAS  Google Scholar 

  2. J. K. Drennen and R. A. Lodder. Nondestructive near-infrared analysis of intact tablets for determination of degradation products. J. Pharm. Sci. 79:622–627 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. A. S. El-Hagrasy, H. R. Morris, F. D’Amico, R. A. Lodder, and J. K. Drennen, 3rd. Near-infrared spectroscopy and imaging for the monitoring of powder blend homogeneity. J. Pharm. Sci. 90:1298–1307 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. A. Urbas, M. W. Manning, A. Daugherty, L. A. Cassis, and R. A. Lodder. Near-infrared spectrometry of abdominal aortic aneurysm in the ApoE−/− mouse. Anal. Chem. 75:3318–3323 (2003).

    Article  Google Scholar 

  5. T. D. Ridder, S. P. Hendee, and C. D. Brown. Noninvasive alcohol testing using diffuse reflectance near-infrared spectroscopy. Appl. Spectrosc. 59:181–189 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. J. C. Soto, C. P. Meza, W. Caraballo, C. Conde, T. Li, K. R. Morris, and R. J. Romanach. On line non-destructive determination of drug content in moving tablets using near infrared spectroscopy. Journal of Process Analytical Technology 2(5):8–14 (2005).

    CAS  Google Scholar 

  7. Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Manufacturing and Quality Assurance, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation (CDER), and Research (CDER),Center for Veterinary Medicine (CVM), Office of Regulatory Affairs (ORA), September 2004.

  8. A. S. Hussain. Process analytical technology: a first step in a jouney towards the desired state. Journal of Process Analytical Technology 2(1):8–13 (2005).

    Google Scholar 

  9. S. R. Byrn, J. K. Liang, S. Bates, and A. W. Newman. PAT—process understanding and control of active pharmaceutical ingredients. Journal of Process Analytical Technology 3(6):14–19 (2006).

    CAS  Google Scholar 

  10. M. R. Fischer and G. M. Hieftje. Near-IR multiplex bandpass spectrometer utilizing polymer filters. Appl. Spectrosc. 50:1246–1252 (1996).

    Article  CAS  Google Scholar 

  11. A. Fong and M. G. Hieftje. Near-IR multiplex bandpass spectrometer using liquid molecular filters. Appl. Spectrosc. 49:493–498 (1995).

    Article  CAS  Google Scholar 

  12. K. R. Beebe and B. R. Kowalski. Introduction to multivariate calibration & analysis. Anal. Chem. 59:1007A–1017A (1987).

    Article  CAS  Google Scholar 

  13. H. Martens and M. Martens. Multivariate analysis of quality an introduction. Wiley, Chicester (2001).

  14. H. Martens and T. Naes. Multivariate calibration. Chapman and Hall, London (1989).

  15. R. Leardi. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemom. 14:643–655 (2000).

    Article  CAS  Google Scholar 

  16. R. Leardi. Genetic algorithm-PLS as a tool for wavelength selection in spectral data sets. Data Handl. Sci. Technol. 23:169–196 (2003).

    CAS  Google Scholar 

  17. C. Schwartz. Integrated Sensing and Processing http://www.darpa.mil/dso/thrust/math/isp.htm.

  18. O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick. Design and testing of a multivariate optical element: The first demonstration of multivariate optical computing for predictive spectroscopy. Anal. Chem. 73:1069–1079 (2001).

    Article  CAS  Google Scholar 

  19. S. E. Bialkowski. Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals. Anal. Chem. 58:2561–2563 (1986).

    Article  CAS  Google Scholar 

  20. A. M. C. Prakash, C. M. Stellman, and K. S. Booksh. Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers. Chemometr. Intell. Lab. Syst. 46:265–274 (1999).

    Article  CAS  Google Scholar 

  21. F. G. Haibach, A. E. Greer, M. V. Schiza, R. J. Priore, O. O. Soysmi, and M. L. Myrick. On-line reoptimization of filter designs for multivariate optical elements. Appl. Opt. 42:1833–1838 (2003).

    PubMed  Google Scholar 

  22. F. G. Haibach and M. L. Myrick. Precision in multivariate optical computing. Appl. Opt. 43:2130–2140 (2004).

    Article  PubMed  Google Scholar 

  23. M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Greer, and P. Gemperline. A single-element all-optical approach to chemometric prediction. Vibr. Spectrosc. 28:73–81 (2002).

    Article  CAS  Google Scholar 

  24. M. L. Myrick, O. Soyemi, H. Li, L. Zhang, and D. Eastwood. Spectral tolerance determination for multivariate optical element design. Fresenius’ J. Anal. Chem. 369:351–355 (2001).

    Article  CAS  Google Scholar 

  25. M. L. Myrick, O. O. Soyemi, F. Haibach, L. Zhang, A. Greer, H. Li, R. Priore, M. V. Schiza, and J. R. Farr. Application of multivariate optical computing to near-infrared imaging. Proc. SPIE Int. Soc. Opt. Eng. 4577:148–157 (2002).

    CAS  Google Scholar 

  26. M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, and R. Priore. Application of multivariate optical computing to simple near-infrared point measurements. Proc. SPIE Int. Soc. Opt. Eng. 4574:208–215 (2002).

    CAS  Google Scholar 

  27. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, and M. L. Myrick. Nonlinear optimization algorithm for multivariate optical element design. Appl. Spectrosc. 56:477–487 (2002).

    Article  CAS  Google Scholar 

  28. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, and M. L. Myrick. Design of angle-tolerant multivariate optical elements for chemical imaging. Appl. Opt. 41:1936–1941 (2002).

    PubMed  CAS  Google Scholar 

  29. L. A. Cassis, B. Dai, A. Urbas, and R. A. Lodder. In vivo applications of a molecular computing-based high-throughput NIR spectrometer. Proc. SPIE-Int. Soc. Opt. Eng. 5329:239–253 (2004).

  30. L. A. Cassis, A. Urbas, and R. A. Lodder. Hyperspectral integrated computational imaging. Anal. Bioanal. Chem. 382:868–872 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. P. Geladi and B. Kowalski. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185:1–17 (1986).

    Article  CAS  Google Scholar 

  32. E. Huang, S. H. Cheng, H. Dressman, J. Pittman, M.-H. Tsou, C.-F. Horng, A. B. E. S. Iversen, M. Liao, C.-M. Chen, M. West, J. R. Nevins, and A. T. Huang. Gene expression predictors of breast cancer outcomes. Lancet 361:1590–1596 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. R. A. Lodder and G. A. Hieftje. Detection of subpopulations in near-infrared reflectance analysis. Appl. Spectrosc. 42:1500–1512 (1988).

    Article  CAS  Google Scholar 

  34. Y. Zou, et al. Making your best case—near-IR spectral identification of soil. Anal. Chem. 65:A434–A439 (1993).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Science Foundation through CNS-0540178, the Kentucky Science and Education Fund, and by the National Institutes of Health through N01AA 33003 and T32 HL072743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Lodder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, B., Urbas, A., Douglas, C.C. et al. Molecular Factor Computing for Predictive Spectroscopy. Pharm Res 24, 1441–1449 (2007). https://doi.org/10.1007/s11095-007-9260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9260-1

Key words

Navigation