Skip to main content
Log in

Methodology of chemometric modeling of spectrometric signals in the analysis of complex samples

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A generalized algorithm of the multivariate simulation of spectrometric data is considered for solving typical analytical problems, like the determination of the concentration of a particular analyte and the assignment of a sample to one of predefined classes. In particular, we considered preliminary data processing, exploratory analysis, optimization of a chemometric model, calculation of performance characteristics, transfer of the model to other spectrometers, and automation of chemometric processing for the routine analysis of samples. To illustrate the potential of the method, we selected a system of bovine and porcine heparin, mixtures of soy and sunflower lecithin, and a set of red and white wine samples as test samples. Partial least squares and discriminant analysis were used as chemometric methods. We used proton nuclear magnetic resonance (1H NMR) to record signals. Using the MATLAB environment, chemometric programs were developed for automated data processing in the context of problems under consideration and for the transfer of multivariate models to other spectrometers. Based on the results obtained, a methodology is proposed for the multivariate analysis of spectrometric data, which can be used in the analysis of various types of matrices and spectrometric signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, N., Bansal, A., Sarma, G.S., and Rawal, R.K., Talanta, 2014, vol. 123, no. 6, p. 186.

    Article  CAS  Google Scholar 

  2. El-Gindy, A. and Hadad, G.M., J. AOAC Int., 2012, vol. 95, no. 3, p. 609.

    Article  CAS  Google Scholar 

  3. Cozzolino, D., Molecules, 2015, vol. 20, no. 1, p. 726.

    Article  Google Scholar 

  4. Kendall, C., Isabelle, M., Bazant-Hegemark, F., Hutchings, J., Orr, L., Babrah, J., Baker, R., and Stone, N., Analyst, 2009, vol. 134, no. 6, p. 1029.

    Article  CAS  Google Scholar 

  5. Rodionova, O.E. and Pomerantsev, A.L., Russ. Chem. Rev., 2006, vol. 75, no. 4, p. 271.

    Article  CAS  Google Scholar 

  6. Monakhova, Yu.B., Kuballa, T., and Lachenmeier, D.V., J. Anal. Chem., 2013, vol. 68, no. 9, p. 755.

    Article  CAS  Google Scholar 

  7. Vershinin, V.I., J. Anal. Chem., 2011, vol. 66, no. 11, p. 1124.

    Article  Google Scholar 

  8. Monakhova, Y.B. and Diehl, B.W., J. Pharm. Biomed. Anal., 2015, vol. 115, no. 11, p. 543.

    Article  CAS  Google Scholar 

  9. Monakhova, Y.B. and Diehl, B.W., J. Am. Oil Chem. Soc., 2016, vol. 93, no. 1, p. 27.

    Article  CAS  Google Scholar 

  10. Monakhova, Y.B., Godelmann, R., Hermann, A., Kuballa, T., Cannet, C., Schäfer, H., Spraul, M., and Rutledge, D.N., Anal. Chim. Acta, 2014, vol. 833, no. 6, p. 29.

    Article  CAS  Google Scholar 

  11. Cordella, C.B.Y. and Bertrand, D., TrAC, Trends Anal. Chem., 2014, vol. 54, no. 2, p. 75.

    Article  CAS  Google Scholar 

  12. Engel, J., Gerretzen, J., Szymanska, E., Jansen, J.J., Downey, G., Blanchet, L., and Buydens, L.M.C., TrAC, Trends Anal. Chem., 2013, vol. 50, no. 10, p. 96.

    Article  CAS  Google Scholar 

  13. Rinnan, A., Berg, F., and Engelsen, S.B., TrAC, Trends Anal. Chem., 2009, vol. 28, no. 10, p. 1201.

    Article  CAS  Google Scholar 

  14. Monakhova, Yu.B., Tsikin, A.M., and Mushtakova, S.P., J. Anal. Chem., 2016, vol. 71, no. 6, p. 554.

    Article  CAS  Google Scholar 

  15. Alonso, A., Rodriguez, M.A., Vinaixa, M., Tortosa, R., Correig, X., Julia, A., and Marsal, S., Anal. Chem., 2014, vol. 86, no. 2, p. 1160.

    Article  CAS  Google Scholar 

  16. Xia, J., Psychogios, N., Young, N., and Wishart, D.S., Nucleic Acid Res., 2009, vol. 37, no. S2, p. W652.

    Article  CAS  Google Scholar 

  17. Izquierdo-Gacia, J.L., Rodrigez, I., Kyriazis, A., Villa, P., Barreiro, P., Desco, M., and Ruiz-Cabello, J., BMC Bioinf., 2009, vol. 10, no. 10, p. 363.

    Article  Google Scholar 

  18. Monakhova, Y.B., Rutledge, D.N., Roßmann, A., Waiblinger, H.-U., Mahler, M., Ilse, M., Kuballa, T., and Lachenmeier, D.W., J. Chemom., 2014, vol. 28, no. 2, p. 83.

    Article  CAS  Google Scholar 

  19. Monakhova, Y.B., Kuballa, T., and Lachenmeier, D.W., Appl. Magn. Res., 2012, vol. 42, no. 3, p. 343.

    Article  CAS  Google Scholar 

  20. Cuny, M., Vigneau, E., Le Gall, G., Colquhoun, I., Lees, M., and Rutledge, D.N., Anal. Bioanal. Chem., 2008, vol. 390, no. 1, p. 419.

    Article  CAS  Google Scholar 

  21. Vigneau, E. and Qannari, E.M., Commun. Stat. Simul. Comput., 2003, no. 4, p. 1131.

    Article  Google Scholar 

  22. Nieuwoudt, H.H., Prior, B.A., Pretorius, I.S., Manley, M., and Bauer, F.F., J. Agric. Food Chem., 2004, vol. 52, no. 12, p. 3726.

    Article  CAS  Google Scholar 

  23. Sharaf, M.A., Illman, D.L., and Kowalski, B.R., Chemometircs, New York: Whiley, 1986.

    Google Scholar 

  24. Rodrigues, J.E., Erny, G.L., Barros, A.S., Esteves, V.I., Brandão, T., Ferreira, A.A., Cabrita, E., and Gil, A.M., Anal. Chim. Acta, 2010, vol. 674, no. 2, p. 166.

    Article  CAS  Google Scholar 

  25. Martínez-Sabater, E., Bustamante, M.A., Marhuenda-Egea, F.C., El-Khattabi, M., Moral, R., Lorenzo, E., Paredes, C., Gálvez, L.N., and Jordá, J.D., J. Agric. Food Chem., 2009, vol. 57, no. 20, p. 9613.

    Article  Google Scholar 

  26. Olivieri, A.C., Faber, N.M., Ferré, J., Boqué, R., Kalivas, J.H., and Mark, H., Pure Appl. Chem., 2006, vol. 78, no. 3, p. 633.

    Article  CAS  Google Scholar 

  27. Godelmann, R., Fang, F., Humpfer, E., Schütz, B., Bansbach, M., Schäfer, H., and Spraul, M., J. Agric. Food Chem., 2013, vol. 61, no. 23, p. 5610.

    Article  CAS  Google Scholar 

  28. Steliopoulos, P., J. Verbr. Lebensm., 2013, vol. 8, no. 5, p. 71.

    Article  Google Scholar 

  29. Loong, T.W., BMJ, 2003, vol. 327, no. 7417, p. 716.

    Article  Google Scholar 

  30. Monakhova, Yu.B. and Mushtakova, S.P., J. Anal. Chem., 2016, vol. 71, no. 8, p. 791.

    Article  Google Scholar 

  31. Spraul, M., Schutz, B., Rinke, P., Koswig, S., Humpfer, E., Schafer, H., Mortter, M., Fang, F., Marx, U.C., and Minoja, A., Nutrients, 2009, vol. 1, no. 2, p. 148.

    Article  CAS  Google Scholar 

  32. Feudale, R.N., Woody, N.A., Tan, H., Myles, A.J., Brown, S.D., and Ferré, J., Chemom. Intell. Lab. Syst., 2002, vol. 64, no. 10, p. 181.

    Article  CAS  Google Scholar 

  33. Alam, T.M., Alam, M.K., McIntyre, S.K., Volk, D.E., Neerathilingam, M., and Luxon, B.A., Anal. Chem., 2009, vol. 81, no. 11, p. 4433.

    Article  CAS  Google Scholar 

  34. Monakhova, Y.B. and Diehl, B.W.K., Magn. Res. Chem., 2016, vol. 54, no. 9, p. 712. doi 10.1002/mrc.4433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Monakhova.

Additional information

Original Russian Text © Yu.B. Monakhova, S.P. Mushtakova, 2017, published in Zhurnal Analiticheskoi Khimii, 2017, Vol. 72, No. 2, pp. 119–128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monakhova, Y.B., Mushtakova, S.P. Methodology of chemometric modeling of spectrometric signals in the analysis of complex samples. J Anal Chem 72, 147–155 (2017). https://doi.org/10.1134/S1061934816120066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934816120066

Keywords

Navigation