Skip to main content

Advertisement

Log in

Role of Phospholipid Transfer Protein on the Plasma Distribution of Amphotericin B Following the Incubation of Different Amphotericin B Formulations

  • Short Communication
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The purpose of this study was to investigate the role of phospholipid transfer protein (PLTP) on the plasma distribution of amphotericin B (AmpB) following incubation with different AmpB formulations in human plasmas with varying lipid profiles.

Methods

In a first set of experiments, plasma distribution profiles of AmpB were determined following the incubation of Fungizone® and lipid-based formulations (Abelcet® and AmBisome®) at a concentration of 20 μg AmpB/mL for 5–120 min at 37°C in the plasma obtained from six different individuals (total cholesterol concentrations range between 62 and 332 mg/dL). In a second set of experiments, Abelcet®, and AmBisome® at a concentration of 20 μg AmpB/mL were incubated for 5 min at 37°C in human plasma (total cholesterol = 163 mg/dL) that had been pretreated with an antibody raised up against PLTP (1:400 v/v dilution from stock solution) for 20 min at 37°C. Following incubation, the human plasma was separated into its lipoprotein and lipoprotein-deficient fractions by density gradient ultracentrifugation and analyzed for AmpB content by high-performance liquid chromatography.

Results

The majority of AmpB was covered in the lipoprotein-deficient plasma and high-density lipoprotein (HDL) fractions following incubation of Fungizone® in human plasma. The majority of AmpB (48.7–87.2%) was recovered in the HDL fraction following incubation of Abelcet® and AmBisome® in human plasma. The presence of the PLTP antibody resulted in a 20% decrease in the percentage AmpB recovered in the HDL fraction following the incubation of Abelcet®. However, the plasma distribution of AmpB remained unchanged following the incubation of AmBisome® in plasma containing the PLTP antibody.

Conclusions

Taken together, these findings suggest indirect evidence that PLTP may play an important role in the plasma distribution profile of AmpB following the incubation of Abelcet® and may be one of the factors responsible for the preferential association of AmpB with HDL when administered as Abelcet®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Sabra R. A. Branch (1990) ArticleTitleAmphotericin B nephrotoxicity Drug Safety 5 94–108 Occurrence Handle2182052 Occurrence Handle1:CAS:528:DyaK3cXkslSnu7o%3D

    PubMed  CAS  Google Scholar 

  2. S. Shoham T. J. Walsh (2002) ArticleTitleLipid formulations of amphotericin B: current roles in management of invasive fungal infections Curr. Treat. Options Infect. Dis. 4 535–547

    Google Scholar 

  3. G. Storm D. J. A. Crommelin (1998) ArticleTitleLiposomes: quo vadis? PSTT 1 19–31 Occurrence Handle1:CAS:528:DyaK1cXislaks7s%3D

    CAS  Google Scholar 

  4. J. Babiak L. L. Rudel (1987) ArticleTitleLipoproteins and atherosclerosis Baillieres Clin. Endocrinol. Metab. 1 515–550 Occurrence Handle3330421 Occurrence Handle1:STN:280:BieB2c%2FitFQ%3D Occurrence Handle10.1016/S0950-351X(87)80022-8

    Article  PubMed  CAS  Google Scholar 

  5. R. A. Davis J. E. Vance (1996) Structure, assembly and secretion of lipoproteins D. E. Vance J. E. Vance (Eds) Biochemistry of Lipids, Lipoproteins and Membranes Elsevier New York, NY 473–493

    Google Scholar 

  6. A. Mbewu P. N. Durrington (1990) ArticleTitleLipoprotein (a): structure, properties and possible involvement in thrombogenesis and atherogenesis Atherosclerosis 85 1–14 Occurrence Handle2149271 Occurrence Handle1:CAS:528:DyaK3MXltlaktLs%3D Occurrence Handle10.1016/0021-9150(90)90177-K

    Article  PubMed  CAS  Google Scholar 

  7. K. M. Wasan S. M. Cassidy (1998) ArticleTitleRole of plasma lipoproteins in modifying the biological activity of hydrophobic drugs J. Pharm. Sci. 87 411–424 Occurrence Handle9548892 Occurrence Handle1:CAS:528:DyaK1cXhs1ChsLw%3D Occurrence Handle10.1021/js970407a

    Article  PubMed  CAS  Google Scholar 

  8. E. G. Arathoon (2001) ArticleTitleClinical efficacy of echinocandin antifungals Curr. Opin. Infect. Dis. 14 685–691 Occurrence Handle11964885 Occurrence Handle1:CAS:528:DC%2BD38XktF2guw%3D%3D

    PubMed  CAS  Google Scholar 

  9. M. Ramaswamy K. Peteherych A. Kennedy K. Wasan (2001) ArticleTitleAmphotericin B lipid complex or amphotericin B multiple-dose administration to rabbits with elevated plasma cholesterol levels: pharmacokinetics in plasma and blood, plasma lipoprotein levels, distribution in tissues, and renal toxicities Antimicrob. Agents Chemother 45 1184–1191 Occurrence Handle11257033 Occurrence Handle1:CAS:528:DC%2BD3MXit1Oms70%3D Occurrence Handle10.1128/AAC.45.4.1184-1191.2001

    Article  PubMed  CAS  Google Scholar 

  10. K. M. Wasan M. G. Rosenblum L. Cheung G. Lopez-Berestein (1994) ArticleTitleInfluence of lipoproteins on renal cytotoxicity and antifungal activity of amphotericin B Antimicrob. Agents Chemother. 38 223–227 Occurrence Handle8192447 Occurrence Handle1:CAS:528:DyaK2cXhvVantrk%3D

    PubMed  CAS  Google Scholar 

  11. K. M. Wasan J. S. Conklin (1997) ArticleTitleEnhanced amphotericin B nephrotoxicity in intensive care patients with elevated levels of low-density lipoprotein cholesterol Clin. Infect. Dis. 24 78–80 Occurrence Handle8994768 Occurrence Handle1:STN:280:ByiC2cfhtlI%3D

    PubMed  CAS  Google Scholar 

  12. J. P. Barrett R. A. Vardulaki C. Conlon J. Cooke P. Daza-Ramirez E. G. Evans et al. (2003) ArticleTitleA systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations Clin. Ther. 5 1295–1320 Occurrence Handle10.1016/S0149-2918(03)80125-X

    Article  Google Scholar 

  13. S. Costa N. Nucci (2001) ArticleTitleCan we decrease amphotericin nephrotoxicity? Curr. Opin. Crit. Care 7 379–383 Occurrence Handle11805538 Occurrence Handle1:STN:280:DC%2BD38%2Fotl2iug%3D%3D Occurrence Handle10.1097/00075198-200112000-00002

    Article  PubMed  CAS  Google Scholar 

  14. A. Kennedy K. Wasan (1999) ArticleTitlePreferential distribution of amphotericin B lipid complex into human HDL3 is a consequence of high density lipoprotein coat lipid content J. Pharm. Sci. 88 1149–1155 Occurrence Handle10564063 Occurrence Handle1:CAS:528:DyaK1MXmvFCgur4%3D Occurrence Handle10.1021/js990101z

    Article  PubMed  CAS  Google Scholar 

  15. S. M. Cassidy F. W. Strobel K. M. Wasan (1998) ArticleTitlePlasma lipoprotein distribution of liposomal nystatin is influenced by protein content of high density lipoproteins Antimicrob. Agents Chemother. 42 1878–1888 Occurrence Handle9687378 Occurrence Handle1:CAS:528:DyaK1cXltFKku70%3D

    PubMed  CAS  Google Scholar 

  16. W. K. Surewicz R. M. Epand H. J. Pownall S. W. Hui (1986) ArticleTitleHuman apolipoprotein A-I forms thermally stable complexes with anionic but not with zwitterionic phospholipids J. Biol. Chem. 261 16191–16197 Occurrence Handle3097001 Occurrence Handle1:CAS:528:DyaL28XlvVKhtbo%3D

    PubMed  CAS  Google Scholar 

  17. K. M. Wasan G. A. Brazeau A. Keyhani A. C. Hayman G. Lopez-Berestein (1993) ArticleTitleRoles of liposome composition and temperature in distribution of amphotericin B in serum lipoproteins Antimicrob. Agents Chemother. 37 246–250 Occurrence Handle8452354 Occurrence Handle1:CAS:528:DyaK3sXhtl2iurk%3D

    PubMed  CAS  Google Scholar 

  18. K. M. Wasan R. Perez-Soler (1995) ArticleTitleDistribution of free and liposomal annamycin with human plasma is regulated by plasma triglyceride concentrations but not by lipid transfer protein J. Pharm. Sci. 84 1094–1100 Occurrence Handle8537888 Occurrence Handle1:CAS:528:DyaK2MXnsVKltrg%3D

    PubMed  CAS  Google Scholar 

  19. A. R. Tall L. R. Forester G. L. Bongiovanni (1983) ArticleTitleFacilitation of phosphatidylcholine transfer into HDL lipoproteins by an apolipoprotein in the density 1.20–1.26 g/ml fraction of plasma J. Lipid Res. 24 277–289 Occurrence Handle6842084 Occurrence Handle1:CAS:528:DyaL3sXhsFyns7c%3D

    PubMed  CAS  Google Scholar 

  20. J. J. Albers J. H. Tollefson C. H. Chen A. Steinmetz (1984) ArticleTitleIsolation and characterization of human plasma lipid transfer proteins Arteriosclerosis 4 49–58 Occurrence Handle6691846 Occurrence Handle1:CAS:528:DyaL2cXhtlKnu74%3D

    PubMed  CAS  Google Scholar 

  21. H. L. Nishida T. Nishida (1997) ArticleTitlePhospholipid transfer protein mediates transfer of not only phosphatidylcholine but also cholesterol from phosphatidylcholine-cholesterol vesicles to high density lipoproteins J. Biol. Chem. 272 6959–6964 Occurrence Handle9054384 Occurrence Handle1:CAS:528:DyaK2sXhvFKjsLY%3D Occurrence Handle10.1074/jbc.272.11.6959

    Article  PubMed  CAS  Google Scholar 

  22. S. J. Murdoch G. Wolfbauer H. Kennedy S. M. Marcovina M. C. Carr J. J. Albers (2002) ArticleTitleDifferences in reactivity of antibodies to active versus inactive PLTP significantly impacts PLTP measurement J. Lipid Res. 43 281–289 Occurrence Handle11861670 Occurrence Handle1:CAS:528:DC%2BD38XitVegs7c%3D

    PubMed  CAS  Google Scholar 

  23. J. B. Massey D. Hickson-Bick D. P. Via A. M. Gotto H. J. Pownall (1985) ArticleTitleFluorescence assay of the specificity of human plasma and bovine liver phospholipids transfer proteins Biochim. Biophys. Acta 835 124–131 Occurrence Handle4005271 Occurrence Handle1:CAS:528:DyaL2MXltF2hsr4%3D

    PubMed  CAS  Google Scholar 

  24. J. Adler-Moore R. T. Proffitt (2002) ArticleTitleAmbisome®: liposomal formulation, structure, mechanism of action and pre-clinical experience J. Antimicrob. Chemother. 49 21–30 Occurrence Handle11801577 Occurrence Handle1:CAS:528:DC%2BD38XhsFChtb8%3D

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported with an operating grant from the Canadian Institutes of Health Research (grant #MOP-77541 to Dr. Kishor M. Wasan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor M. Wasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patankar, N., Wasan, K.M. Role of Phospholipid Transfer Protein on the Plasma Distribution of Amphotericin B Following the Incubation of Different Amphotericin B Formulations. Pharm Res 23, 1020–1024 (2006). https://doi.org/10.1007/s11095-006-9900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9900-x

Key Words

Navigation