Skip to main content

Advertisement

Log in

A Charge Pair Interaction Between Arg282 in Transmembrane Segment 7 and Asp341 in Transmembrane Segment 8 of hPepT1

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine whether R282 in transmembrane segment 7 (TMS7) of hPepT1 forms a salt bridge with D341 in TMS8.

Methods

Mutated hPepT1 transporters containing point mutations at R282 and/or D341 were transiently transfected into HEK293 cells. Their steady state expression and functional activity were measured using immunoprecipitation and 3H-gly-sar uptake, respectively. Gly-sar uptake by cysteine mutants (R282C and D341C) was also measured in the presence and absence of cysteine-modifying MTS reagents.

Results

The reverse-charge mutants R282D-hPepT1 and D341R-hPepT1 showed significantly reduced gly-sar uptake, but the double mutant (R282D/D341R-hPepT1) has functionality comparable to that of wild-type hPepT1. Gly-sar uptake by R282C-hPepT1 is reduced, but pre-incubation with 1 mM MTSET, a positively charged cysteine-modifying reagent, restored function to wild-type levels. Similarly, pre-incubation of D341C-hPepT1 with 10 mM MTSES, a negatively charged cysteine-modifying reagent, increased gly-sar uptake compared to unmodified D341C-hPepT1. In contrast, MTSET modification of D341C-hPepT1 (giving a positive charge at position 341) resulted in significant reduction in gly-sar uptake, compared to D341C-hPepT1.

Conclusion

Our results are consistent with a salt bridge between R282 and D341 in hPepT1, and we use these and other data to propose a role for the R282-D341 charge pair in the hPepT1 translocation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. S. Anand, J. Patel, and A. K. Mitra. Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2. J. Pharmacol. Exp. Ther. 304:781–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. B. S. Anand, J. M. Hill, S. Dey, K. Maruyama, P. S. Bhattacharjee, M. E. Myles, Y. E. Nashed, and A. K. Mitra. In vivo antiviral efficacy of a dipeptide acyclovir prodrug, val-val-acyclovir, against HSV-1 epithelial and stromal keratitis in the rabbit eye model. Investig. Ophthalmol. Vis. Sci. 44:2529–2534 (2003).

    Article  Google Scholar 

  3. I. Knutter, S. Theis, B. Hartrodt, I. Born, M. Brandsch, H. Daniel, and K. Neubert. A novel inhibitor of the mammalian peptide transporter PEPT1. Biochemistry 40:4454–4458 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. G. L. Amidon and C. R. Walgreen, Jr. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res. 16:175 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. C. S. Temple, A. K. Stewart, D. Meredith, N. A. Lister, K. M. Morgan, I. D. Collier, R. D. Vaughan-Jones, C. A. R. Boyd, P. D. Bailey, and J. R. Bronk. Peptide mimics as substrates for the intestinal peptide transporter. J. Biol. Chem. 273:20–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. M. Brandsch, I. Knutter, and F. H. Leibach. The intestinal H(+)/peptide symporter PEPT1: structure-affinity relationships. Eur. J. Pharm. Sci. 21:53–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. M. B. Bolger, I. S. Haworth, A. K. Yeung, D. Ann, H. von Grafenstein, S. Hamm-Alvarez, C. T. Okamoto, K. J. Kim, S. K. Basu, S. Wu, and V. H. L. Lee. Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1. J. Pharm. Sci. 87:1286–1291 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. A. A. Kulkarni, I. S. Haworth, and V. H. L. Lee. Transmembrane segment 5 of the dipeptide transporter hPepT1 forms a part of the substrate translocation pathway. Biochem. Biophys. Res. Commun. 306:177–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. A. A. Kulkarni, I. S. Haworth, T. Uchiyama, and V. H. L. Lee. Analysis of transmembrane segment 7 of the dipeptide transporter hPepT1 by cysteine-scanning mutagenesis. J. Biol. Chem. 278:51833–51840 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Y. J. Fei, J. C. Liu, T. Fujita, R. Liang, V. Ganapathy, and F. H. Leibach. Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1–PEPT2 and PEPT2–PEPT1 chimeras. Biochem. Biophys. Res. Commun. 246:39–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. F. Doring, D. Dorn, U. Bachfischer, S. Amasheh, M. Herget, and H. Daniel. Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms. J. Physiol. (Lond.) 497:773–779 (1996).

    Google Scholar 

  12. F. Doring, C. Martini, J. Walter, and H. Daniel. Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function. J. Membr. Biol. 186:55–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. P. W. Swaan, B. C. Koops, E. E. Moret, and J. J. Tukker. Mapping the binding site of the small intestinal peptide carrier (PepT1) using comparative molecular field analysis. Recept. Channels 6:189–200 (1998).

    CAS  PubMed  Google Scholar 

  14. Y. J. Fei, W. Liu, P. D. Prasad, R. Kekuda, T. G. Oblak, V. Ganapathy, and F. H. Leibach. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Biochemistry 36:452–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. T. Terada, H. Saito, K. Sawada, Y. Hashimoto, and K. Inui. N-terminal halves of rat H+/peptide transporters are responsible for their substrate recognition. Pharm. Res. 17:15–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. S. Nussberger, A. Steel, D. Trotti, M. F. Romero, W. F. Boron, and M. A. Hediger. Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1. J. Biol. Chem. 272:7777–7785 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. T. Uchiyama, A. A. Kulkarni, D. L. Davies, and V. H. L. Lee. Biophysical evidence for His57 as a proton-binding site in the mammalian intestinal transporter hPepT1. Pharm. Res. 20:1911–1916 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. R. Liang, Y. J. Fei, P. D. Prasad, S. Ramamoorthy, H. Han, T. L. Yang-Feng, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270:6456–6463 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Y. J. Fei, Y. Kanai, S. Nussberger, V. Ganapathy, F. H. Leibach, M. F. Romero, S. K. Singh, W. F. Boron, and M. A. Hediger. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563–566 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. K. M. Covitz, G. L. Amidon, and W. Sadee. Membrane topology of the human dipeptide transporter, hPEPT1, determined by epitope insertions. Biochemistry 37:15214–15221 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. D. Meredith. Site-directed mutation of arginine282 to glutamate uncouples the movement of peptides and protons by the rabbit proton–peptide cotransporter PepT1. J. Biol. Chem. 279:15795–15798 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. A. K. Yeung, S. K. Basu, S. K. Wu, C. Chu, C. T. Okamoto, S. F. Hamm-Alvarez, H. von Grafenstein, W. C. Shen, K. J. Kim, M. B. Bolger, I. S. Haworth, D. K. Ann, and V. H. L. Lee. Molecular identification of a role for tyrosine 167 in the function of the human intestinal proton- coupled dipeptide transporter (hPepT1). Biochem. Biophys. Res. Commun. 250:103–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. M. Sahin-Toth and H. R. Kaback. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci. 2:1024–1033 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. J. A. Javitch, X. Li, J. Kaback, and A. Karlin. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl. Acad. Sci. U. S. A. 91:10355–10359 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Q. Lu and C. Miller. Silver as a probe of pore-forming residues in a potassium channel. Science 268:304–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. M. Mueckler and C. Makepeace. Transmembrane segment 5 of the Glut1 glucose transporter is an amphipathic helix that forms part of the sugar permeation pathway. J. Biol. Chem. 274:10923–10926 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. M. Mueckler and C. Makepeace. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility. J. Biol. Chem. 277:3498–3503 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. M. H. Kim, M. Lu, M. Kelly, and L. B. Hersh. Mutational analysis of basic residues in the rat vesicular acetylcholine transporter. Identification of a transmembrane ion pair and evidence that histidine is not involved in proton translocation. J. Biol. Chem. 275:6175–6180 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. R. L. Dunten, M. Sahin-Toth, and H. R. Kaback. Role of the charge pair aspartic acid-237-lysine-358 in the lactose permease of Escherichia coli. Biochemistry 32:3139–3145 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. J. Abramson, I. Smirnova, V. Kasho, G. Verner, H. R. Kaback, and S. Iwata. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. M. H. Akabas, C. Kaufmann, P. Archdeacon, and A. Karlin. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13: 919–927 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. M. C. Shelden, P. Loughlin, M. L. Tierney, and S. M. Howitt. Interactions between charged amino acid residues within transmembrane helices in the sulfate transporter SHST1. Biochemistry 42:12941–12949 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. X. Y. Liu and L. H. Matherly. Functional interactions between arginine-133 and aspartate-88 in the human reduced folate carrier: evidence for a charge-pair association. Biochem. J. 358:511–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. J. Chen, J. S. Mitcheson, M. Lin, and M. C. Sanguinetti. Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J. Biol. Chem. 275:36465–36471 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. A. Merickel, H. R. Kaback, and R. H. Edwards. Charged residues in transmembrane domains II and XI of a vesicular monoamine transporter form a charge pair that promotes high affinity substrate recognition. J. Biol. Chem. 272:5403–5408 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. C. N. Chin and G. von Heijne. Charge pair interactions in a model transmembrane helix in the ER membrane. J. Mol. Biol. 303:1–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. V. Borner, Y. J. Fei, B. Hartrodt, V. Ganapathy, F. H. Leibach, K. Neubert, and M. Brandsch. Transport of amino acid aryl amides by the intestinal H+/peptide cotransport system, PEPT1. Eur. J. Biochem. 255:698–702 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants GM59297 (VHLL & ISH) and AA013890 (DLD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Haworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, A.A., Davies, D.L., Links, J.S. et al. A Charge Pair Interaction Between Arg282 in Transmembrane Segment 7 and Asp341 in Transmembrane Segment 8 of hPepT1. Pharm Res 24, 66–72 (2007). https://doi.org/10.1007/s11095-006-9119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9119-x

Key words

Navigation