Skip to main content
Log in

Rapid Assessment of the Structural Relaxation Behavior of Amorphous Pharmaceutical Solids: Effect of Residual Water on Molecular Mobility

  • Special Issue
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Use RH-perfusion microcalorimetry and other analytical techniques to measure the interactions between water vapor and amorphous pharmaceutical solids; use these measurements and a mathematical model to provide a mechanistic understanding of observed calorimetric events.

Materials

Isothermal microcalorimetry was used to characterize interactions of water vapor with a model amorphous system, spray-dried raffinose. Differential scanning calorimetry was used to measure glass transition temperature, T g. High-sensitivity differential scanning calorimetry was used to measure enthalpy relaxation. X-ray powder diffraction (XRPD) was used to confirm that the spray-dried samples were amorphous. Scanning electron microscopy (SEM) was used to examine particle morphology. Gravimetric vapor sorption was used to measure moisture sorption isotherms. Thermogravimetric analysis (TGA) was used to measure loss on drying.

Results

A moisture-induced thermal activity trace (MITAT) provides a rapid measure of the dependence of molecular mobility on moisture content at a given storage temperature. At some relative humidity threshold, RHm, the MITAT exhibits a dramatic increase in the calorimetric rate of heat flux. Simulations using calorimetric data indicate that this thermal event is a consequence of enthalpy relaxation.

Conclusions

RH-perfusion microcalorimetry is a useful tool to determine the onset of moisture-induced physical instability of glassy pharmaceuticals and could find a broad application to determine appropriate storage conditions to ensure long-term physical stability. Remarkably, thermal events measured on practical laboratory timescales (hours to days) are relevant to the stability of amorphous materials on much longer, pharmaceutically relevant timescales (years). The mechanistic understanding of these observations in terms of enthalpy relaxation has added further value to the use of RH-perfusion calorimetry as a rapid means to characterize the molecular mobility of amorphous solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Van den Mooter, P. Augustijns, and R. Kinget. Stability prediction of amorphous benzodiazepines by calculation of the mean relaxation time constant using the Williams–Watts decay function. Eur. J. Pharm. Biopharm. 48(1):43–48 (1999).

    Article  PubMed  Google Scholar 

  2. S. P. Duddu, G. Zhang, and P. R. Dal Monte. The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody. Pharm. Res. 14(5):596–600 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. R. A. Shmeis, Z. Wang, and S. L. Krill. A mechanistic investigation of an amorphous pharmaceutical and its solid dispersions, part I: A comparative analysis by thermally stimulated depolarization current and differential scanning calorimetry. Pharm. Res. 21:2025–2030 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. S. Yoshioka, S. Tajima, Y. Aso, and S. Kojima. Inactivation and aggregation of beta-galactosidase in lyophilized formulation described by Kohlrausch–Williams–Watts stretched exponential function. Pharm. Res. 20(10):1655–1660 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. J. Liu, D. R. Rigsbee, C. Stotz, and M. J. Pikal. Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry. J. Pharm. Sci. 91:1853–1862 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. V. Andronis and G. Zografi. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm. Res. 15(6):835–842 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. S. P. Duddu and T. D. Sokoloski. Dielectric analysis in the characterization of amorphous pharmaceutical solids. 1. Molecular mobility in poly(vinylpyrrolidone)—water systems in the glassy state. J. Pharm. Sci. 84:773–776 (1995).

    PubMed  CAS  Google Scholar 

  8. S. Yoshioka, Y. Aso, and S. Kojima. Temperature- and glass transition temperature-dependence of bimolecular reaction rates in lyophilized formulations described by the Adam–Gibbs–Vogel equation. J. Pharm. Sci. 93(4):1062–1069 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. H. Hu and C. T. Sun. The equivalence of moisture and temperature in physical aging of polymeric composites. J. Compos. Mater. 37:913–928 (2003).

    Article  CAS  Google Scholar 

  10. B. Borde, H. Bizot, G. Vigier, and A. Buléon. Calorimetric analysis of the structural relaxation in partially hydrated amorphous polysaccharides. I. Glass transition and fragility. Carbohydr. Polym. 48:83–96 (2002).

    Article  CAS  Google Scholar 

  11. D. Lechuga-Ballesteros, A. Bakri, and D. P. Miller. Microcalorimetric measurement of the interactions between water vapor and amorphous pharmaceutical solids. Pharm. Res. 20(2):308–318 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. B. Makower and W. B. Dye. Equilibrium moisture content and crystallization of amorphous sucrose and glucose. J. Agric. Food Chem. 4:72–77 (1956).

    Article  CAS  Google Scholar 

  13. H. Binder, B. Kohlstrunk, and H. H. Heerklotz. Hydration and lyotropic melting of amphiphilic molecules: a thermodynamic study using humidity titration calorimetry. J. Colloid Interface Sci. 220(2):235–249 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. V. P. Lehto and E. Laine. Simultaneous determination of the heat and the quantity of vapor sorption using a novel microcalorimetric method. Pharm. Res. 6:701–706 (2000).

    Article  Google Scholar 

  15. M. Pudipeddi, T. D. Sokoloski, S. P. Duddu, and J. T. Carstensen. Quantitative characterization of adsorption isotherms using isothermal microcalorimetry. J. Pharm. Sci. 85(4):381–386 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. L. Greenspan. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. Sec., A. 81:89–102 (1977).

    Google Scholar 

  17. A. Bakri. Design, testing and pharmaceutical applications of a gas pressure controller device for solid-gas microcalorimetric titration. In ThermoMetric Application Note 22021, Thermometric AB, Sweden, 4 (1993).

  18. K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan. Partially crystalline systems in lyophilization: I. Use of ternary state diagrams to determine extent of crystallization of bulking agent. J. Pharm. Sci. 94(4):798–808 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. K. Kajiwara, F. Franks, P. Echlin, and A. L. Greer. Structural and dynamic properties of crystalline and amorphous phases in raffinose-water mixtures. Pharm. Res. 16:1441–1448 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. A. Saleki-Gerhardt, J. G. Stowell, S. R. Byrn, and G. Zografi. Hydration and dehydration of crystalline and amorphous forms of raffinose. J Pharm. Sci. 84(3):318–323 (1995).

    PubMed  CAS  Google Scholar 

  21. G. E. Downton, J. L. Flores-Luna, and C. J. King. Mechanism of stickiness in hygroscopic,. amorphous powders. Ind. Eng. Chem. Fundam. 21:447–451 (1982).

    Article  CAS  Google Scholar 

  22. M. E. Lazar, A. H. Brown, G. S. Smith, F. F. Wong, and F. E. Lindquist. Experimental production of tomato powder by spray drying. Food Technol. 3:129–134 (1956).

    Google Scholar 

  23. D. A. Wallack and C. J. King. Sticking and agglomeration of hygroscopic amorphous carbohydrate and food powders. Biotechnol. Prog. 4(1):31–35 (1988).

    Article  CAS  Google Scholar 

  24. Y. Frenkel. Viscous flow of crystalline bodies under the action of surface tension. J. Phys. (USSR). 9(5):385–391 (1945).

    Google Scholar 

  25. M. Peleg and C. H. Mannheim. The mechanism of caking of powdered onion. J. Food Process. Preserv. 1:3–11 (1977).

    Google Scholar 

  26. B. C. Hancock, C. R. Dalton, M. J. Pikal, and S. L. Shamblin. A pragmatic test of a simple calorimetric method for determining the fragility of some amorphous pharmaceutical materials. Pharm. Res. 15(5):762–767 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. I. M. Hodge. Adam–Gibbs formulation of enthalpy relaxation near the glass transition. J. Res. Natl. Inst. Sci. Technol. 102:195–205 (1997).

    CAS  Google Scholar 

  28. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88:3113–3157 (2000).

    Article  CAS  Google Scholar 

  29. C. T. Moynihan. Structural relaxation and the glass transition. Rev. Miner. 32:1–19 (1995).

    CAS  Google Scholar 

  30. L. C. E. Struik. Physical Aging in Amorphous Polymers and other Materials, Elsevier, Amsterdam, 1978.

    Google Scholar 

  31. A. Q. Tool. Relations between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29:240 (1946).

    Article  CAS  Google Scholar 

  32. O. S. Narayanaswamy. A model of structural relaxation in glass. J. Am. Ceram. Soc. 54(10):491 (1971).

    Article  CAS  Google Scholar 

  33. G. B. McKenna. On the physics required for the prediction of long–term performance of polymers and their composites. J. Res. Natl Inst. Stand. Technol. 99:169–189 (1994).

    CAS  Google Scholar 

  34. F. Kohlrausch. Pogg. Ann. Phys. 199:352 (1863).

    Google Scholar 

  35. G. Williams and D. C. Watts. Non-symmetrical dielectric relaxation behavior arising from a simple decay function. Trans. Faraday Soc. 66:80–85 (1970).

    Article  CAS  Google Scholar 

  36. J. M. G. Cowie, S. Harris, and I. J. McEwen. Physical aging in poly(vinyl acetate) 2. Relative rates of volume and enthalpy relaxation. Macromolecules. 31:2611–2615 (1998).

    Article  CAS  Google Scholar 

  37. B. C. Hancock, S. L. Shamblin, and G. Zografi. The molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm. Res. 12(6):799–806 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. S. Yoshioka, Y. Aso, and S. Kojima. Usefulness of the Kohlrausch–Williams–Watts stretched exponential function to describe protein aggregation in lyophilized formulations and the temperature dependence near the glass transition temperature. Pharm. Res. 18(3):256–260 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. R. Böhmer, K. L. Ngai, C. A. Angell, and D. J. Plazek. Non-exponential relaxations in strong and fragile glass-formers. J. Chem. Phys. 99(5):4201–4209 (1993).

    Article  Google Scholar 

  40. H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson. Macromolecules. 23:3640–3647 (1990).

    Article  CAS  Google Scholar 

  41. K. Kawakami and M. J. Pikal. Calorimetric investigation of the structural relaxation of amorphous materials: evaluating validity of the methodologies. J. Pharm. Sci. 94(5):948–965 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. I. M. Hodge and A. R. Berens. Effects of annealing and prior history on enthalpy relaxation in glassy polymers 2. Mathematical modeling. Macromolecules 15:762–770 (1982).

    Article  CAS  Google Scholar 

  43. J. N. Hay and M. J. Jenkins. Simulation of the glass transition. J. Therm. Anal. Calorim. 56:1005–1010 (1999).

    Article  CAS  Google Scholar 

  44. S. L. Shamblin, B. C. Hancock, Y. Dupuis, and M. J. Pikal. Interpretation of relaxation time constants for amorphous pharmaceutical systems. J. Pharm. Sci.. 89(3):417–427 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. D. J. Plazek and C. A. Bero. Precise glass temperatures. J. Phys., Condens. Matter. 15:S789–S802 (2003).

    Article  CAS  Google Scholar 

  46. M. Yoshioka, B. C. Hancock, and G. Zografi. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J. Pharm. Sci. 83(12):1700–1705 (1994).

    PubMed  CAS  Google Scholar 

  47. J. T. Carstensen and K. Van Scoik. Amorphous-to-crystalline transformation of sucrose. Pharm. Res. 7(12):1278–1281 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge our colleagues from Nektar Therapeutics for helpful discussions and insight provided throughout the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danforth P. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.P., Lechuga-Ballesteros, D. Rapid Assessment of the Structural Relaxation Behavior of Amorphous Pharmaceutical Solids: Effect of Residual Water on Molecular Mobility. Pharm Res 23, 2291–2305 (2006). https://doi.org/10.1007/s11095-006-9095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9095-1

Key words

Navigation